$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ）to afford 3.9 mg （ 98.5% ）of lactone 22， $\mathrm{mp} 242-243^{\circ} \mathrm{C}$（recryst $\left.\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}$ NMR（ 270 MHz ）$\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta \mathrm{TMS}$ 2．044－2．378（ $2 \mathrm{H}, \mathrm{m}$ ），3．141－3．239（ $1 \mathrm{H}, \mathrm{m}$ ）， $3.687(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $19.3 \mathrm{~Hz})$ ， $3.790(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=19.3 \mathrm{~Hz}), 4.123-4.394(3 \mathrm{H}, \mathrm{m})$ ， $8.237(1 \mathrm{H}, \mathrm{s}), 8.357(1 \mathrm{H}, \mathrm{s})$ ；IR（ NaCl ，neat） $3180,1750,1670,1535$ ， $1455,1370,1325,1165,1085,1015 \mathrm{~cm}^{-1}$ ．Anal．$\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$ ， N．

X－ray Structure Determination．For compound $20\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right)$ at $20(1){ }^{\circ} \mathrm{C}, a=7.929$（3）$\AA, b=16.094$（9）$\AA, c=18.891$（9）$\AA$ ；space group $P n a 2_{1}, \rho_{\mathrm{c}}=1.34 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$ ，formula weight $=487.58 \% \mathrm{~mol}^{-1}$ ． The intensities of 2451 reflections（ $h, k, l \geq 0 ; 3.5^{\circ}<2 \theta<50^{\circ}$ ）from a small crystal $(0.28 \mathrm{~mm} \times 0.22 \mathrm{~mm} \times 0.38 \mathrm{~mm})$ were measured $(\theta-2 \theta$ scans）on the Nicolet R $3 \mathrm{~m} / \mathrm{E}$ diffractometer（ $\mathrm{Mo} \mathrm{K}_{\alpha}$ radiation，graphite monochromator）．Unique，observed reflections（1801（ $I>2 \sigma(I)$ ）were used in refinement of the structure．The structure was solved（using Sheldrick＇s direct methods routine RANT）and refined by using the SHELXTL crystallographic program library ${ }^{18}$ supplied by Nicolet with the R3m／E computing system．The final structural model included aniso－ tropic thermal parameters for all non－hydrogen atoms，together with placement of hydrogen atoms in idealized positions．A check of the correctness of the crystal enantiomorph provided a positive，albeit weak， indication that the reported enantiomorph was correct．Refinement of this structural model（ 317 least－squares parameters）converged to $R=$ $0.038, R_{w}=0.041$ ，and GOF $=1.17$ ．

Results of this structure determination have been provided as sup－ plementary material（Table 1，atomic coordinates；Table 2，bond lengths； Table 3，bond angles；Table 4，anisotropic thermal parameters；Table 5， hydrogen atom positions；Table 6 ，structure factors）．

Acknowledgment．Acknowledgement is made to the National Institutes of Health Grant 1 R01 AI18957 for financial support of this work．NMR measurements at 360 MHz were obtained at the Colorado State University Regional NMR Center，funded by the National Science Foundation Grant CHE 78－18581．The Nicolet R3m／E diffractometer and computer system used in the
（18）Sheldrick，G．M．＂shelxtl User Manual＂；Nicolet XRD Corp： Madison，WI， 1984.

X－ray structure determination was purchased with funds provided by the National Science Foundation（Grant CHE 8103011）．

Registry No．8a，95676－10－1；8b，95676－11－2；8c，95676－12－3；8d， 95676－13－4；（ \pm ）－major syn－10a $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ，95676－14－5；（ \pm ）－ minor anti－10a $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ， $95723-17-4$ ；(\pm)－minor syn－10a $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ，95723－18－5；（ \pm ）－major antt－10a $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ， 95723－19－6；（土）－syn－10a $\left(\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ，95676－15－6； （土）－anti－10a $\left(\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 95676-16-7$ ；(\pm)－major syn－ 10a $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3}\right), 95676$－17－8；$(\pm)$－minor syn－10a $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ ， 95723－20－9；（ \pm ）－major syn－10b（ $\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}$ ），92098－01－6；（土）－ minor syn－10b（ $\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}$ ），92216－23－4；（土）－syn－10b $\left(\mathrm{R}_{2}=\mathrm{CH}_{3}\right.$ ； $\left.\mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ，95676－18－9；（土）－antt－10b $\left(\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ， 95676－19－0；（土）－major syn－10b $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ ，95676－20－3；（土）－minor syn－10b $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ ，95723－21－0；(\pm)－major syn－10c $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$ ），92098－11－8；（土）－major anti－10c $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 92216$－ 27－8；（ \pm ）－minor syn－10c（ $\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}$ ），92216－26－7；（ \pm ）－minor anti－10c $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ，92216－28－9；(\pm)－anti－10c $\left(\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}\right.$ $=\mathrm{CO}_{2} \mathrm{CH}_{3}$ ），95676－21－4；（土）－syn－10c $\left(\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ， 95676－22－5；（ \pm ）－minor syn－10c $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ ，95676－23－6；（ \pm ）－major syn－10c $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ ，95723－22－1；(\pm)－major anti－10c $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{3}\right)$ ， $95723-23-2 ;(\pm)$－syn－10d $\left(\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ， 95676 － 24－7；(\pm)－anti－10d $\left(\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ，95693－57－5；12b， 42492－87－5；12c，92097－99－9；12d，21535－05－7；13a，21579－45－3；13b， 89291－86－1；13c，92098－10－7；13d，30478－55－8； $15\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p\right.$－ $\left.\mathrm{OCH}_{3}\right), 95676-09-8 ;(\pm)-16\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}\right), 95676-25-8 ;(\pm)-17$ $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ ，major isomer），95676－26－9；(\pm)－17 $\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{C}\right.$－ H_{2} ，minor isomer），95676－27－0； $21\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}, \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\right.$ $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ ，95676－28－1； $22\left(\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ，95676－29－2；2－pySH， 73018－10－7；γ－butyrolactone ketone trimethylsilyl acetal，51425－66－2； carbomethoxy ketene methyl trimethylsilyl acetal，32346－10－4；δ－vale－ rolactone trimethylsilyl ketene acetal，71309－70－1；α－（trimethylsilyl）－γ－ butyrolactone ketene trimethylsilyl acetal，65946－60－3．

Supplementary Material Available：Tables of atomic coordi－ nates，bond lengths，bond angles，anisotropic thermal parameters and hydrogen atom positions for the crystal structure of 20 （ 15 pages）．Ordering information is given on any current masthead page．

Stereocontrolled Total Synthesis of（ \pm ）－and （＋）－Bicyclomycin ${ }^{\dagger}$

Robert M．Williams，${ }^{*}$ Robert W．Armstrong，and Jen－Sen Dung
Contribution from the Department of Chemistry，Colorado State University，Fort Collins． Colorado 80523．Received October 10， 1984

Abstract

The completely regio－and stereocontrolled total synthesis of bicyclomycin（1）is described in 12 chemical steps． A new carbon－carbon bond－forming reaction on 1，4－dibenzyl－and 1，4－bis（ p－methoxybenzyl）－3，6－bis（ 2^{\prime}－thiopyridyl）－2，5－ piperazinediones（ 10 and 46）has been discovered involving complexation of 10 or $\mathbf{4 6}$ with silver（I）triflate followed by addition of the trimethylsilyl ketene acetal of γ－butyrolactone to afford 1，4－dibenzyl－and 1，4－bis $\left(p\right.$－methoxybenzyl）－3－（ 2^{\prime}－thio－ pyridyl）－6－（ $2^{\prime \prime}-\gamma$－butyrolactonyl）－2，5－piperazinediones（11，12，and 47－50）in good yield．The reaction proceeds in THF at $25^{\circ} \mathrm{C}$ with predominant syn stereospecificity． LiAlH_{4} reduction of lactones $\mathbf{4 7 - 4 9}$ provides the corresponding diols $51-53$ which are cyclized to the bicyclo［4．2．2］nucleus 54 in the presence of silver（I）triflate in THF at $25^{\circ} \mathrm{C}$ ．Dehydration of 54 in three steps affords the key olefinic intermediate 8,10 －bis（ p－methoxybenzyl）－8，10－diaza－5－methylene－2－oxabicyclo［4．2．2］－ decane－7，9－dione（42b）which is regio－and stereoselectively elaborated at the bridgehead positions via（1）C－6－bridgehead carbanion formation followed by quenching with O_{2} ，and（2） C －1－bridgehead carbanion formation followed by aldol condensation with 2，2，4－trimethyl－1，3－dioxolane－4－carboxaldehyde to afford a single diastereomer（44b）possessing the correct relative configuration at $\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}$ ．Protection of the secondary hydroxyl at $\mathrm{C}-1^{\prime}$ as the trifluoroacetate followed by oxidative removal of all the protecting groups with ceric ammonium nitrate in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ affords directly，totally synthetic bicyclomycin． Condensation of the racemic bicyclic nucleus 43b with optically active S －2，2，4－trimethyl－1，3－dioxolane－4－carboxaldehyde（ee 83% ）provides，after trifluoroacetylation and deprotection，$(+)$－bicyclomycin in ee 78% ．

In 1972，two Japanese groups reported the independent isola－ tion ${ }^{1}$ of a structurally unique antibiotic from cultures of Strep－ tomyces sapporonensis and Streptomyces aizunensis．The sub－ stance，named bicyclomycin or aizumycin（1），was found to exhibit

[^0]antimicrobial activity against gram－negative bacteria and had the highly desirable property of displaying very low toxicity．The structure of bicyclomycin and the relative configuration were unambiguously established through X－ray crystallographic
（1）For references to the isolation，structural elucidation biological activity， and mechanism of action of bicyclomycin，see ref 7 and 9.
analysis. ${ }^{1}$ Preliminary studies by Iseki et. al., revealed that the mechanism of action of bicyclomycin seems to be distinct from the other known classes of antibiotics; the chemical mechanism of action of bicyclomycin and the nature of the bicyclomycinbinding proteins remain to be determined. ${ }^{1}$ The efficient production of bicyclomycin from fermentation broths has led to the commercial introduction of this substance now named bicozamycin, ${ }^{2}$ by the Fujisawa Co., on a worldwide basis.

Bicyclomycin is biosynthetically derived by the oxidative cyclodimerization of the amino acids leucine and isoleucine. ${ }^{3}$ The novel 8,10-diaza-2-oxabicyclo[4.2.2]decane-7,9-dione nucleus containing the exomethylene moiety, primary, secondary, and two tertiary hydroxyl groups, and four asymmetric carbon atoms poses a substantial synthetic challenge. The history of synthetic approaches to bicyclomycin commenced with a landmark paper by Maag and associates at Hoffmann-La Roche in 1978^{4} wherein the absolute stereochemistry of 1 was established through the synthesis and X-ray crystallographic structure determination of the bis spiro dehydration product (2) of $\mathbf{1}$ (eq 1). In this paper,

Maag points out that "synthesis schemes for bicyclomycin should probably be contrived in a way that circumvents the energy minimum represented by 2 ".

A flurry of synthetic activity from numerous laboratories ${ }^{5}$ followed and recently culminated in two total syntheses, one by the Goto group ${ }^{6}$ and the other from these laboratories. ${ }^{7}$ In addition, a successful synthesis of the bicyclomycin ring system bearing a bridgehead hydroxyl was achieved by Fukuyama and co-workers. ${ }^{8}$ The strategy that has evolved from our laboratories ${ }^{9}$ to construct the bicyclomycin ring system differs significantly from those mentioned above ${ }^{6,8}$ in addressing the crucial spiro vs. transannular cyclization problem of a monocyclic precursor 3 (eq 2). For structure 3 , where $X=Z=$ some heteroatom-bearing leaving group, one would expect the kinetically and thermodynamically favored spiro closure $(3 \rightarrow 4)$ to be the predominant reaction course as implicated by Maag ${ }^{4}$ and is supported by experimental data. ${ }^{5}, 6,8$ Both the Fukuyama ${ }^{8}$ and Goto ${ }^{6}$ groups have similarly solved this problem by differentiating X and Z , so that Z is a more powerful leaving group than X , and the desired transannular cyclization can take place to furnish a structure 5 that contains the bridgehead alkoxy group ($\mathrm{X}=\mathrm{OH}$).

On the other hand, we have engineered a strategy ${ }^{7,9}$ that completely sidesteps the potential formation of spiro structures (4) by constructing a precursor 3 , where $\mathrm{X}=\mathrm{H}$ and $\mathrm{Z}=$ some leaving group. In this way, only the desired bicyclo[4.2.2] ring

[^1]
system 5 is formed (where $X=H$) and thus requires the subsequent introduction of the bridgehead hydroxyl ($\mathrm{X}=\mathrm{H} \rightarrow \mathrm{X}=$ OH).

We have previously reported ${ }^{9}$ on the synthesis and properties of the simple bicyclo[4.2.2] and bicyclo[3.2.2] nuclei 6 a and 6b which can be regio- and stereoselectively elaborated at the bridgehead positions (H_{a} and H_{b}) via generation and electrophilic quenching of the corresponding bridgehead carbanions. Our

$60, n=2$
6 $6, n=1$

I

8

studies ${ }^{9 \mathrm{c}}$ revealed that the carbanion derived by removal of H_{a} adjacent to the bridging CH_{2} is thermodynamically more stable than the carbanion adjacent to the bridging oxygen atom (removal of H_{b}). In this way, an efficient regio- and stereocontrolled six-step synthesis of the bicyclomycin model 7 was realized. ${ }^{96}$ In order to reduce this efficient model study to a total synthesis of bicyclomycin, we had to overcome two difficult problems. Firstly, the most difficult problem involved is developing a means to introduce the C-5 exomethylene moiety which was devoid in the model systems. From our standpoint, this amounted to preparing a suitably oxidized isoleucine precursor containing the bridging isobutyl moiety. To our knowledge, no readily available amino acid or equivalent synthon existed that could be easily incorporated into our approach. Secondly, a suitable blocking group for the amides had to be selected that would withstand the strongly basic conditions required to generate the bridgehead carbanions and yet be removable under mild enough conditions that would not lead to the destruction of the labile final tetraol product. We have realized a significant extension of the inherent advantages of the desmethylene model series we have developed, in a program engineered for versatile and divergent access to structurally unique bicyclomycin analogues that cannot readily be prepared by manipulation of the abundantly available natural antibiotic. The cornerstone of this approach is the regiocontrolled elaboration of nuclei $\mathbf{8} \rightarrow \mathbf{9}$ (eq 3).
Herein is provided a full account of the total synthesis of bicyclomycin in racemic and optically active form.

Scheme I

Results and Discussion

At the outset, we endeavored to construct a 2,5-piperazinedione 3, where $\mathrm{X}=\mathrm{R}^{\prime \prime}=\mathrm{H}$ and $\mathrm{Y}=$ a latent exomethylene carbon. We extensively investigated the enolate functionalization of $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted 2,5 -piperazinediones with a wide variety of electrophiles that would ultimately furnish the desired structure 3. Unfortunately, we were unable to realize the reasonably efficient coupling of a secondary center to the piperazinedione α carbon by using enolate chemistry. ${ }^{10}$ We were forced to conclude that the enolate anions are generally, poor nucleophiles toward carbon electrophiles other than aldehydes and primary halides. We then turned to an approach in which the polarity of the desired coupling was reversed; i.e., the piperazinedione α-carbon would serve as the electrophile rather than the nucleophile. This mode of reactivity for piperazinediones had previously been utilized toward heteroatom nucleophiles such as O^{11} and $\mathrm{S},{ }^{12}$ but no precedent for carbon nucleophiles existed in the literature.

As described in the preceeding paper ${ }^{13}$ in this issue, 1,4 -di-benzyl-2,5-piperazinedione was converted into the syn-3,6-bis(thiopyridyl) derivative 10. Precomplexation of 10 with 1 equiv of silver(I) triflate in THF at $25^{\circ} \mathrm{C}$ for 10 min , followed by addition of I equiv of γ-butyrolactone trimethylsilyl enol ether $\left(2 \mathrm{~h}, 25^{\circ} \mathrm{C}\right.$) furnished the syn-lactones 11 and 12 (2:1 ratio, epimeric at the lactone α carbon) in 70% yield (Scheme I).

[^2]Reduction of each lactone with 1 equiv of LiAlH_{4} in THF at 25 ${ }^{\circ} \mathrm{C}$ for 1 min followed by a rapid quench with $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ afforded the diols 13 and 14. It proved necessary to immediately purify the crude oils by chromatography; the purified materials were quite stable, but the crude decomposed rapidly.
Although unimportant ultimately, the stereochemistry obtained at the lactone α carbon proved to be significant in the cyclization of the corresponding diols 13 and 14 . When the diol $\mathbf{1 3}$ obtained from the "major" lactone 11 was treated with 1 equiv of AgOTf in THF at $25^{\circ} \mathrm{C}$, a $1: 1$ mixture of the desired bicyclo[4.2.2] ring system 15 and undesired bicyclo[3.2.2] system 16 was produced. When the corresponding "minor" diol 14 was similarly desulfurized, exclusive formation of the undesired bicyclo[3.2.2] diastereomer 17 (C-4 epimer of 16) resulted. The product distribution from these two diastereomeric diols can be rationalized by examining the conformation of the putative precyclization iminium species that result from silver-assisted desulfurization of $\mathbf{1 3}$ and 14. In the case of $\mathbf{1 4}$, molecular models clearly show the preferred conformation of the $1^{\prime}, 4^{\prime}$-dihydroxybutyl moiety to be that depicted in structure C, where steric repulsion between the N-benzyl residue and the methylenes of the dihydroxybutyl group are minimized. This conformation places the hydroxymethyl moiety proximal to the electrophilic iminium carbon which, upon intramolecular alcoholysis, leads to the bicyclo[3.2.2] system 17. For the "major" diol diastereomer 13, the same conformational analysis as above dictates that structure A should be the most stable, ${ }^{14}$ thus placing the hydroxyethyl group proximal to the iminium carbon to provide the desired bicyclo[4.2.2] system 15. The roughly equimolar amount of 16 produced from this reaction, however, indicates that the entropically favored ring closure to the bicyclo[3.2.2] system
(14) The X-ray crystal structure of $\mathbf{1 2}$ also supports this arguement; see ref 13 .

Scheme II

Reagents and conditions: (a) 2.5 equiv of methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv), THF, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) 2.2 equiv of $\mathrm{NaBH}_{3} \mathrm{SePh}$, THF, reflux, 2.2 h ; (c) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (5 equiv) THF, reflux, 20 min ; (d) 1.5 equiv of $n \cdot \mathrm{BuLi}$, HMPA (2 equiv), (Me $\mathrm{I}_{2} \mathrm{~N}$) ${ }_{3} \mathrm{P}$ ($2 \mathrm{equiv)} \mathrm{}, \mathrm{THF}$, $-100^{\circ} \mathrm{C} 11 \mathrm{~min}$ and then O_{2} (gas) $15 \mathrm{~min},-100^{\circ} \mathrm{C}$; (e) 2.3 equiv of n - BuLi , THF, $-100^{\circ} \mathrm{C}$.
effectively competes via the more sterically encumbered structure B.

The undesirable regioselectivity preference for cyclization to the bicyclo[3.2.2] system could be effectively dealt with in the following manner. Selective silylation of diol 14 with tert-butyldimethylchlorosilane furnished a 4.7:1 mixture of silyl ethers 18 and 19 (76%). The major product was then converted into the tert-butyldiphenyl silyl ether 21 by silylation and selective HF-py removal of the more labile tert-butyldimethylsilyl group (75%, two steps). Cyclization of 21 with AgOTf in THF at 25 ${ }^{\circ} \mathrm{C}$ furnished the desired bicyclo[4.2.2] system 22 (80%). The minor silyl ether 19 was directly converted to the corresponding bicyclic silyl ether 23 (91%) by treatment with $\mathrm{AgOTf} / \mathrm{K}_{2} \mathrm{CO}_{3}{ }^{15}$ in THF at $25^{\circ} \mathrm{C}$. The same series of transformations could be applied to the minor diol $\mathbf{1 4}$ to afford silyl ethers 24 and 25 in a $4: 1$ ratio (58%). As above, the minor component 25 was directly cyclized to the bicyclo[4.2.2] system 27 (80%); HF-py treatment accordingly provided alcohol 29 . The major component 24 could either be subjected to the silylation/desilylation sequence as above for $\mathbf{1 8}$ or converted to the mesylate $\mathbf{2 6}$ and directly cyclized to the bicyclo[4.2.2] mesylate 28 by treatment with 3 equiv of $\mathrm{PhHgClO}_{4}{ }^{16}$ in THF at $25^{\circ} \mathrm{C}(78 \%)$. In this way, complete conversion of the diols $\mathbf{1 4}$ and $\mathbf{1 5}$ to the desired bicyclo[4.2.2] nucleus was realized.

At this point, we examined the introduction of the required bridgehead hydroxyl and $\mathrm{C}-1^{\prime}-\mathrm{C}-3^{\prime}$ polyoxo side chain for the silyl derivative 23, realizing that introduction of the exomethylene moiety would most likely have to occur after the reductive or oxidative removal of the N-benzyl protecting groups. We were surprised to find that treatment of $\mathbf{2 3}$ with n - BuLi in THF/HMPA at $-100^{\circ} \mathrm{C}$ followed by quenching with methyliodide afforded exclusively the methylated derivative $\mathbf{3 0}$. This regioselectivity is in contradistinction with that we have observed for $\mathbf{6 a}$ and $\mathbf{6 b}$ as discussed above and may be due to steric and/or electronic effects of the silyloxymethyl group. The regioselectivity displayed by the carbanion quench of $\mathbf{2 3}$ dictated the order of introduction of $\mathrm{C}-1^{\prime}-\mathrm{C}-3^{\prime}$ via an aldol condensation followed by bridgehead hydroxylation at C-6. Thus, regio- and stereocontrolled aldol condensation of the bridgehead carbanion of 23 (LDA/THF, -100 ${ }^{\circ} \mathrm{C}$) was achieved by quenching with 5 equiv of (\pm)-2,2,4-tri-methyl-1,3-dioxolane-4-carboxaldehyde ${ }^{4}$ to afford a single diastereomer 31 (80%). Silylation ($\mathrm{Bu}^{+} \mathrm{Me}_{2} \mathrm{SiOTf}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$) of the secondary alcohol (32) followed by hydroxylation ($n-\mathrm{BuLi} / \mathrm{THF},-100^{\circ} \mathrm{C}, \mathrm{O}_{2}$ quench) afforded the alcohol 33 (78%). Unfortunately, all attempts ${ }^{17}$ to remove the N-benzyl groups on bicyclic derivatives 31-34, $6 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}\right)$, $\mathbf{1 6}, 22,23,27$, and 29 under a range of hydrogenolytic, dissolving

[^3]metal, oxidative, and hydrolytic conditions ${ }^{17}$ failed to produce any quantity of the desired deprotected bicyclic compounds. In particular, we found that under reductive conditions ($\mathrm{H}_{2}, 20 \%$ $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$), cleavage of the $\mathrm{C}-1-\mathrm{O}$ ether linkage and/or saturation ${ }^{18}$ of the aromatic benzylic rings were the only types of reactivity observed. We were forced to conclude that the N-benzyl group does not constitute a generally useful protecting group for the bicyclomycin system. ${ }^{19}$

During the course of the above studies, we made two curious observations with substrates 23 and 32 . When compound $\mathbf{2 3}$ was treated with LDA in THF at $-100^{\circ} \mathrm{C}$ and quenched with tert butyldimethylsilyl chloride, the expected C -silyl derivative 35 and the unexpected monodebenzylated compound 36 were isolated. The debenzylation of $\mathbf{2 3}$ is mechanistically difficult to rationalize based on the limited data we have; the precedent of Newcomb, ${ }^{20}$ among others, however, would make it seem quite reasonable that LDA acts as the reducing agent by an electron-transfer process. An additionally interesting observation was made when the same substrate (23) was sequentially treated with LDA, TMSC1, and LDA; the C-silylated benzyl derivative 37 was isolated. Such a species presumably arose via trapping of the putative benzylic carbanion. This is the first case in our extensive bridgehead carbanion studies where we have apparently observed competing benzylic deprotonation over bridgehead carbanion formation. Excellent precedent in the literature describing "dipole-stabilized" amide N -carbanions exists, ${ }^{21}$ thus, this result was not completely unexpected. It did suggest, however, that we might be able to successfully remove the recalcitrant N-benzyl groups by carbanionic oxidation. Treatment of $\mathbf{3 2}$, with tert-butyllithium at $-100^{\circ} \mathrm{C}$ followed by an O_{2} quench afforded a new compound that has been assigned structure 38 (35% or 68% based on 32) based on spectroscopic data. Further attempts to oxidize both benzylic positions to benzoyl groups under more forcing conditions on 32 and $\mathbf{3 3}$ were unsuccessful. Apparently, tert-butyllithium is a strong enough base to form the benzylic carbanion but is too bulky to abstract a proton from the sterically encumbered $\mathrm{N}-8$-benzylic moiety.
Just prior to embarking on a new strategy with another am-ide-protecting group, we decided to complete a synthesis of the N-benzylbicyclomycin system. A more efficient procedure for functionalizing the bridgehead positions was found by first introducing the exomethylene moiety onto the 1,6 -unsubstituted bicyclo[4.2.2] nucleus. Dehydration of 29 to the bicyclic olefin 42 was readily accomplished in three steps: (1) mesylation (39); (2) selenide formation (40); and (3) oxidation/elimination (Scheme II). The corresponding diastereomeric mesylate 28 discussed above could similarly be transformed into olefin $\mathbf{4 2}$ via the selenide 41.

[^4]
Scheme III

We were pleased to discover that the regioselectivity in the functionalization of the bridgehead carbanions of 42 was the reverse of that observed for $\mathbf{2 3}$ and in accordance with the behavior ${ }^{9 c}$ exhibited by the desmethylene nuclei $\mathbf{6 a}$ and $\mathbf{6 b}$; i.e., H_{a} could be selectively deprotonated over $\mathrm{H}_{\mathrm{b}} .{ }^{22}$ This order of regioselectivity is highly desirable since it diminshes the number of protecting group manipulations and, thus, overall number of steps.

Treatment of $\mathbf{4 2}$ with 1 equiv of n-BuLi in THF containing 2 equiv of HMPA and 2 equiv of hexamethylphosphorous triamide ${ }^{23}$ at $-78^{\circ} \mathrm{C}$ followed by quenching with O_{2} afforded the desired tertiary alcohol 43 (55%). Formation of the dianion of 43 (2.3 equiv of n - $\mathrm{BuLi} / \mathrm{THF},-98^{\circ} \mathrm{C}$) followed by addition of 5 equiv of (\pm)-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde ${ }^{4}$ afforded a single diastereoisomer 44 (73\%). Although a correlation of 44 to bicyclomycin was not forthcoming, ${ }^{24}$ the ${ }^{1} \mathrm{H}$ NMR spectrum of 44 clearly indicated that the aldol condensation rendered the correct relative configuration. Attempted removal of the N-benzyl groups of $\mathbf{4 4}$ again failed to produce the desired results. The only solace which was available from the now aborted N-benzyl series was the demonstrated feasibility of the overall synthetic plan that had emerged which, if a suitable amide protecting group could be selected, would lead to a considerably shorter synthesis of 1 than had been established by the Nagoya ${ }^{6}$ group.

Due to the very favorable regio- and stereocontrol exhibited by the olefinic substrates 42 and 43 , we turned our attention toward potential protecting groups that could be removable under mild oxidative or hydrolytic conditions; reductive conditions would almost surely saturate the exomethylene. Following precedent from the β-lactam literature, we prepared ${ }^{25}$ the simple N - p methoxyphenyl and $N \cdot p$-methoxybenzyl substrates 6 a ($\mathrm{R}=\mathrm{Ph}$ -
(22) The $J_{\mathrm{C}-\mathrm{H}}$ for the bridgehead methine protons of this nucleus (determined on 42 b) were 144 and 162 Hz for H_{a} and H_{b}, respectively. This compares with 144 and 168 Hz for H_{a} and H_{b}, respectively, for $6\left(\mathrm{R}=\mathrm{CH}_{3}\right.$, ref 9 c). The slightly diminished s character for $\mathrm{C}-\mathrm{H}_{\mathrm{b}}$ in $\mathbf{4 2 b}$ as compared to 6 would indicate a slightly enhanced thermodynamic acidity for H_{a} in this system.
(23) We have found that inclusion of the phosphine results in higher yields of the alcohol which is presumably due to the reduction of the putative peroxide formed upon O_{2} quench. LDA also effects the reduction of the peroxide: Williams, R. M.; Dung, J.-S. Tetrahedron Lett. 1985, $26,37$.
(24) Attempted N-benzylation of natural bicyclomycin and the corresponding acetonide 45 gave an array of products, none of which could be readily correlated to 44; see also ref 6 b.
(25) (a) Krunethanl, D. R.; Han, C. Y.; Taylor, M. K. J. Org. Chem. 1982 47, 2765. (b) Yanagisawa, H.; Ando, A.; Shiozaki, M.; Hiraoka, T. Tetrahedron Lett. 1983 24, 1037.
$p-\mathrm{OCH}_{3}$ and $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}-p \cdot \mathrm{OCH}_{3}$, respectively). Treatment of the N - p-methoxyphenyl derivative with a variety of oxidants (DDQ, CAN, $\mathrm{CrO}_{3}, \mathrm{O}_{3}$, electrochemical oxidation) failed to remove both p-methoxyphenyl rings; products resulting from the deblocking of one of the amides were realized with O_{3} but further deprotection proved to be fruitless. We were pleased to discover that treatment of the $N-p$-methoxybenzyl derivative $\mathbf{6 a}$ with ceric ammonium nitrate (CAN) according to the excellent conditions of Yoshimura ${ }^{26}$ provided the desired lipophobic bicyclic compound $6 \mathrm{a}(\mathrm{R}=\mathrm{H})$ in 54% yield. To further test the feasibility of this approach, we examined the stability of natural bicyclomycin $2^{\prime}, 3^{\prime}$-acetonide $(45)^{27}$ toward this reagent. Treatment of 45 with 4 equiv of CAN $(0.33 \mathrm{M})$ led to the complete destruction of $\mathbf{4 5}$ with no identifiable components being isolable. However, under slightly milder conditions (0.5 equiv of CAN, 0.04 M), the isopropylidene moiety of 45 was cleanly removed producing 1. Unfortunately, these conditions failed to deblock 6a ($\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}$). In a competition experiment, an equimolar mixture of 45 and $6 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}-\mathrm{p}\right.$ - OCH_{3}) when treated with 4.5 equiv of CAN (0.3 M) fortuitously led to the clean deprotection of $6 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}-p \cdot \mathrm{OCH}_{3}\right) \rightarrow 6 \mathrm{a}(\mathrm{R}=\mathrm{H})$ and $45 \rightarrow$ 1. This result clearly established that the reaction of CAN with the p-methoxybenzyl groups at the required concentration was faster than the decomposition of the bicyclomycin nucleus. With this promising, yet narrow window apparent, we embarked on the total synthesis of bicyclomycin

Total Synthesis of (\pm)-Bicyclomycin

Condensation of the N-(p-methoxybenzyl)-syn-3,6-bis(thiopyridyl) derivative ${ }^{28} 46$ with γ-butyrolactone trimethylsilyl enol ether in the presence of silver(I) triflate afforded the corresponding lactones $\mathbf{4 7 - 5 0}$ (Scheme III) in 71% combined yield. ${ }^{13}$ The stereochemistry of each compound was readily assigned by correlation ${ }^{13}$ to the N-benzyl analogues $\mathbf{1 1}$ and $\mathbf{1 2}$ as well as the behavior of the derived diols in the cyclizations. Reduction of the lactones 47,48 , and 49 to the corresponding diols 51,52 , and

[^5]Scheme IV

$\underline{52}$

D
SYN
MAJOR
MINOR

44b
F
58

53, respectively, was accomplished with LiAlH_{4} in THF at $25^{\circ} \mathrm{C}$. The minor anti-lactone $\mathbf{5 0}$ could not be effectively reduced to the corresponding diol and was, instead, epimerized to 49 in the presence of base.

We were very intrigued to observe the product distribution resulting from cyclization of the major diols 51 and 52 . The syn diastereomer 51 afforded a $2: 1$ mixture of the desired bicyclo[4.2.2] alcohol 54 and undesired bicyclo[3.2.2] alcohol 55 upon treatment with AgOTf, in THF at $25^{\circ} \mathrm{C}$. On the other hand, the anti-diol 52 afforded a 10:1 ratio of 54:55! This result clearly indicates that the transition states leading to the bicyclic products from the respective diols are distinct. The conformational analysis discussed above for the N-benzyl series also predicts that 54 should be the major product from both $\mathbf{5 1}$ and $\mathbf{5 2}$. The syn disposition of 51, however, mandates that removal of the thiopyridyl residue must precede $\mathrm{C}-1-\mathrm{O}$ ether formation, and, thus, iminium species D is a reasonable intermediate. The anti-diol 52, on the other hand, is capable of an intramolecular $\mathrm{S}_{\mathrm{N}^{2}}$ alcoholysis of the Ag^{+}-coordinated thiopyridyl residue (see 52, Scheme IV) and does not have to pass through the iminium species D to form the products. The relatively poor selectivity displayed by 51 when compared to $\mathbf{5 2}$ is readily rationalized on the assumption that iminium species D is highly reactive (early transition state), giving poor selectivity; the anti-diol 52, then, would have a lower energy
transition state farther along the reaction coordinate and thus displays greater selectivity consistent with the conformational analysis (vida infra). As expected, the minor diol diastereomer 53 gives exclusive formation (via E) of the bicyclo[3.2.2] system 56.

The formation of the desired bicyclo[4.2.2] ring system from 51 and 53 was achieved in the same way as that described above for the N-benzyl series ${ }^{29}$ (Chart I). The desired bicyclic olefin 42b was obtained by dehydration of 54 (82%, cf. Scheme II) or from the diastereomeric mesylate 28b. Hydroxylation of 42b afforded 43b (52%) which, upon aldol condensation as described above, afforded a single diastereomer (44b, 95\%) that possessed the correct relative configuration.

One curious observation was encountered during repeated trials of this remarkably diastereoselective aldol condensation. Typically, the reaction is performed at $-100^{\circ} \mathrm{C}$ and quenched with methanol at $-80^{\circ} \mathrm{C}$. A variation in the procedure, where the reaction is allowed to warm to room temperature and then quenched with methanol, results in the isolation of a second diastereomer ($1: 1$ ratio) that we have assigned as the $\mathrm{C}-1^{\prime}$ epimer ${ }^{30}$ of $\mathbf{4 4 b}$ (57).

[^6]
Chart I

18. $R_{1}=S_{1 M} e_{2} B u^{\prime} \cdot R_{2}=H$
$\underline{19}, R_{1}=H \cdot R_{2}=\operatorname{SiMe} e_{2} B^{\prime}$
$20, R_{1}=\operatorname{SiMe} 2 \mathrm{Bu}^{\dagger}, \mathrm{R}_{2}=\operatorname{SiPh}_{2} \mathrm{Bu}^{\dagger}$
$\underline{2}, R_{1}=H_{1} R_{2}=S_{i P h} \mathrm{PH}^{\dagger}$

22, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OSiPh}_{2} \mathrm{Bu}^{\dagger}$
23, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}^{+}$
27, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}^{\dagger}, \mathrm{R}_{2}=\mathrm{H}$
$28, \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OM}_{3}, \mathrm{R}_{2}=\mathrm{H}$
29, $\mathrm{R}_{1}=\mathrm{CH} \mathrm{H}_{2} \mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
$39, R_{1}=H, R_{2}=\mathrm{CH}_{2} \mathrm{OM}$
$40, R_{1}=H, R_{2}=\mathrm{CH}_{2} \mathrm{SePh}$
41, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{SePh} \mathrm{R}_{2}=\mathrm{H}$

24, $R_{1}=\operatorname{SiMe}_{2} B u^{\prime} \cdot R_{2}=H$
25, $R_{1}=H, R_{2}=\operatorname{SiM}_{2} \mathrm{Bu}^{\dagger}$
26, $R_{1}=\operatorname{SiMe}{ }_{2} \mathrm{Bu}^{\prime}, R_{2}=\mathrm{Ms}_{3}$

Since the desired aldol (44b) is formed and quenched under kinetic conditions, it is difficult to rationalize the formation of $\mathbf{5 7}$ upon warming to room temperature. It is possible that upon warming, the initially formed lithium alkoxide corresponding to 44b undergoes a retro-Aldol condensation and recondenses, forming the observed diastereomeric mixture. Ample literature precedent for the retro-Aldol equilibrium of kinetic aldols can be cited. ${ }^{31}$ The subtle electronic and steric effects of this particular bicyclic system that exhibit the remarkable degrees of stereoselectivities in both the kinetic and equilibrium processes are obscure. However, if the reaction is performed at $-100^{\circ} \mathrm{C}$ and quenched below -80 ${ }^{\circ} \mathrm{C}$, the reliable, consistent, and exclusive formation of the desired isomer 44b is realized.

At this state, we turned to the crucial and final deblocking of 44b to bicyclomycin. Disappointingly, subjecting 44b to ceric ammonium nitrate in aqueous acetonitrile at the required concentration led to the rapid consumption of the starting material and the production of >10 unidentifiable products. The only identifiable component has been assigned structure 58 based on ${ }^{1} \mathrm{H}$ NMR, IR, and mass spectral data. The formation of 58 can be readily rationalized by consideration of a related rearrangement of N -alkylated bicyclomycin derivatives recently reported by Wacker ${ }^{32}$ and associates. Tautomeric ring opening of 44b, followed by intramolecular alcoholysis of the incipient ketone carbonyl by the $\mathrm{C}-1^{\prime}-\mathrm{OH}$, loss of the isopropylidene moiety, and intramolecular trapping of the putative $\mathrm{N}-8$-benzylic cation by $\mathrm{N}-10$, furnishes 58 (illustrated as F, Scheme V).

In an attempt to preclude this rearrangement, both the $\mathrm{C}-1^{\prime}$ and C-6 hydroxyl groups were converted into the corresponding trimethylsilyl and tert-butyl dimethylsilyl ethers. Treatment of these derivatives with CAN essentially led to the same product distribution as that obtained from 44b, indicating the lability of

[^7]Chart II

$$
\begin{aligned}
& \text { 30. } \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=\mathrm{CH}_{3} \\
& 35, \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{\prime}
\end{aligned}
$$

$$
36, R_{1}=R_{2}=H
$$

$$
\overline{37}, R_{1}=C H\left(\operatorname{SiMe}_{3}\right) \mathrm{Ph}, R_{2}=H
$$

these silyl ethers to CAN. After extensive experimentation, we found that reaction of $\mathbf{4 4 b}$ with trifluoroacetic anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of DMAP led to the selective acetylation (59, Scheme VI) of the C-1'-OH in 95% yield. Treatment of 59 with 4 equiv of CAN in aqueous acetonitrile (0.3 M) followed by silica gel chromatography ${ }^{33}$ directly afforded totally synthetic (\pm)bicyclomycin in 35% yield (31% overall yield from 44b). Comparison of ${ }^{1} \mathrm{H}$ NMR, IR, MS, TLC, and biological assay ${ }^{34}$ confirmed the identity of synthetic 1.

With the total synthesis of racemic bicyclomycin completed, we studied the resolution of the racemic bicyclic nucleus through the aldol condensation with optically active (-)-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde. ${ }^{35}$ The high degree of diastereodifferentiation displayed in the mutually racemic coupling indicated that an effective resolution could by realized by making either 44b or the aldehyde optically active. When the asymmetric synthesis we recently reported ${ }^{35}$ was used, the desired (-)-aldehyde was prepared (ca. ee 83%) and condensed with 43b. We were gratified to isolate the optically active diastereomer of $\mathbf{4 4 b}$ (9% or 49% based on consumed 43b). ${ }^{36}$ Conversion of this material to $(+)$-bicyclomycin exactly as described above furnished bicyclomycin with an optical rotation of $+58^{\circ}$ which corresponds to ca. ee 78%. It is apparent that the optical purity of the material obtained in the aldol condensation is limited by the optical purity
(33) We have found that the trifluoroacetate is stable to elution from silica gel with THF but is labile to elution with MeOH. Indeed, the final deprotonation does not produce 1 from the CAN reaction mixture; the trifluoroacetate is cleaved in the final purification with silica gel $/ \mathrm{MeOH}$
(34) Williams, R. M.; Armstrong, R. W.; Dung, J.-S. J. Med. Chem., in press.
(35) Dung, J.-S.; Armstrong, R. W.: Anderson, O. P.; Williams, R. M. J. Org. Chem. 1983 48, 3592 and references cited therein.
(36) The unreacted 43b was found to be optically enriched, $[\alpha]^{25}{ }_{D}-6.2^{\circ}$.

Scheme VI

of the aldehyde employed. In principle, it would be possible to completely resolve ${ }^{36}$ the unreacted 43 b ($1 S, 6 R$) from this condensation by adjusting the reaction conditions such that complete consumption of ($1 R, 6 S$)- 43b occurred.

The totally synthetic $(+)$-bicyclomycin was identical with the natural sample by comparison of spectral properties.

Summary. The total synthesis of bicyclomycin has been achieved in 12 chemical steps (13 steps via 26b) with complete regio- and stereocontrol. Since the natural product is now available commercially from an efficient fermentation process, the present total synthesis or, conceivably, any synthetic path is not likely to have any commercial import. The inherent value of the versatile unsubstituted bicyclic nuclei that we have employed in these studies and the interesting behavior of their derived bridgehead carbanions merit further application in elucidating the potentially valuable and unique mechanism of action of bicyclomycin. The $N-p$ methoxybenzyl derivatives allow for the preparation of a multitude of lipophilic and lipophobic bicyclic structures ${ }^{34}$ that are not accessible by degradation of 1 . The search for mechanistically and functionally unique compounds based on the bicyclomycin nucleus is currently under investigation.

Experimental Section

 propyl)]-2,5-piperazinedione (13). ${ }^{37}$ To a stirred solution of 11 (899 mg , $1.88 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) at $0^{\circ} \mathrm{C}$ over N_{2} was added solid lithium aluminum hydride ($35.02 \mathrm{mg}, 0.943 \mathrm{mmol}, 0.5$ equiv), and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The mixture was then quenched with excess $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, filtered, concentrated, and separated by flash column silica gel (sequentially eluted with 1:1 EtOAc/hexanes to 100% EtOAc) to afford $380 \mathrm{mg}(54 \%)$ of 13 as an oil: ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.80-1.90(1 \mathrm{H}, \mathrm{m}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.2-2.25(1$ $\mathrm{H}, \mathrm{m}), 3.69\left(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.83(5 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 4.16(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{s})$, $5.20(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 5.21(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 6.71$ $(1 \mathrm{H}, \mathrm{s}), 7.04-7.44(11 \mathrm{H}, \mathrm{m}), 7.44-7.68(2 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $=5.5 \mathrm{~Hz}) ; 1 \mathrm{R}(\mathrm{NaCl}$, neat $) 3400,2910,1670,1450,1415,1115,720$ cm^{-1}; mass spectrum, $m / e 380$ (2.4), 292 (1.8), 91 (100).

1,4-Dibenzyl-3-(2'-thiopyridyl)-6-[$1^{\prime \prime}$-(hydroxymethyl)- $3^{\prime \prime}$-(hydroxy-propyl)]-2,5-piperazinedione (14). To a stirred solution of 12 (652 mg , $1.34 \mathrm{mmol}, 1.0$ equiv) in THF (30 mL) at $0^{\circ} \mathrm{C}$ was added a solution of lithium aluminum hydride ($25.4 \mathrm{mg}, 0.669 \mathrm{mmol}, 0.5$ equiv) in THF (2 mL). After stirring 20 min at $0^{\circ} \mathrm{C}$, excess $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ was added, the mixture was stirred 10 min , and then warmed to room temperature, filtered, concentrated, and separated by PTLC silica gel (eluted with $4: 1$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $310 \mathrm{mg}(47.3 \%)$ of 14 as an oil: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.60-2.08(2 \mathrm{H}, \mathrm{m}), 2.20-2.36(1 \mathrm{H}, \mathrm{m})$, $3.60-3.96\left(6 \mathrm{H}, \mathrm{m}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 4.06(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 4.13$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{br} s), 5.25(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $14.7 \mathrm{~Hz}), 5.39(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{s}), 7.02-7.68(13$ $\mathrm{H}, \mathrm{m}), 8.46(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (25 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 31.52$ (t), 42.96 (d), 46.81 (t), 49.73 (t), 60.18 (d), 60.71 ($2 \mathrm{C}, \mathrm{t}$), 61.53 (d), 121.02 (d), 122.54 (d), 128.26 (d), 128.38 (d), 128.73 (d), 135.33 (s), 135.62 (s), 136.73 (d), 149.11 (d), 154.83 (s), 164.69 (s), 167.32 (s); mass spectrum, $m / e 380\left(\mathrm{M}^{+}-111,7.5\right), 362$ (3.5), 297 (2.1), 292 (9.4), 274 (9.7), 111 (92.8), 91 (100).
8,10-Dibenzyl-8,10-diaza-5-(hydroxymethyl)-2-oxabicyclo[4.2.2]de-cane-7,9-dione (15) and 7,9-Dibenzyl-7,9-diaza-4-[2'-(hydroxyethyl)]-2-
(37) Melting points are uncorrected. See ref 13 for general experimental conditions, abbreviations, and instrumentation details.
oxabicyclo[3.2.2]nonane-6,8-dione (16). To a stirred solution of 13 (40 $\mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv) in THF (1.5 mL) at room temperature was added solid silver triflate ($24 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred 10 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated on PTLC silica gel (eluted with 1:9:89 $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $25 \mathrm{mg}(80 \%)$ of an inseparable mixture of $\mathbf{1 5}$ and 16.

Compound 16: ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.25(2 \mathrm{H}$, m), $1.82\left(1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exch), $2.38(1 \mathrm{H}, \mathrm{m}), 3.60(3 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {vic }}=5.33, J_{\text {gem }}=12.47 \mathrm{~Hz}\right), 4.01(1 \mathrm{H}, \mathrm{s}), 4.30(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1$ $\mathrm{Hz}), 4.39(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.84(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz})$, $4.94(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{s}), 7.20-7.30(10 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3600-3200,1670 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 380$ (4.5), 292 (11.6), 202 (4.4), 91 (100).

8,10-Dibenzyl-8,10-diaza-5-(hydroxymethyl)-2-oxabicyclo[4.2.2]de-cane-7,9-dione (15). To a stirred solution of $22(5 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0$ equiv) in THF (0.5 mL at room temperature was added excess HF. pyridine complex. The solution was stirred for 30 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous sodium sulfate, filtered, concentrated, and separated on PTLC silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexane) to afford $3 \mathrm{mg}(98 \%)$ of 15 as an oil: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $1.58-1.65(1 \mathrm{H}, \mathrm{m}), 1.70-1.85$ ($1 \mathrm{H}, \mathrm{m}$), 2.19-2.28 ($1 \mathrm{H}, \mathrm{m}$), 2.46 ($1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exch), $3.58-3.70(2 \mathrm{H}, \mathrm{m}), 3.72-3.81(2 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6$ $\mathrm{Hz}), 4.25(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 4.97$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.97(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 5.21(1$ $\mathrm{H}, \mathrm{s}), 7.18-7.40(10 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR $(25 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 28.8(\mathrm{t})$, 45.0 (d), 47.6 (t), 47.9 (t), 60.18 (d), 63.3 ($t), 63.5$ (t), 78.2 (d), 128.2 (d), 128.2 (d), 128.3 (d), 128.9 (d), 134.9 (s), 135.1 (s), 163.2 (s), 168.3 (s); IR (NaCl , neat) $3600-3150,1675,1450,1160 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 380(0.6), 312$ (1.1), 149 (6.9), 91 (11.4), 84 (100).

7,9-Dibenzyl-7,9-diaza-4-(2'-hydroxyethyl)-2-oxabicyclo[3.2.2]no-nane-6,8-dione (17). To a stirred solution of 14 ($43.6 \mathrm{mg}, 0.089 \mathrm{mmol}$, 1.0 equiv) in THF (2 mL) at room temperature was added solid silver triflate ($36.8 \mathrm{mg}, 0.177 \mathrm{mmol}, 2.0$ equiv), and the mixture was stirred at room temperature. After 20 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:9:89 $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 26 mg (78%) of 17 as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.20-1.35(1 \mathrm{H}, \mathrm{m})$, $1.35-1.60(2 \mathrm{H}, \mathrm{m}), 1.82-1.95(1 \mathrm{H}, \mathrm{m}), 3.26\left(1 \mathrm{H}, \mathrm{dd}, J_{v i c}=8.7, J_{\mathrm{gem}}\right.$ $=11.5 \mathrm{~Hz}), 3.48(2 \mathrm{H}, \mathrm{brt}, J=6.2 \mathrm{~Hz}), 3.78\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=6.2, J_{\text {gem }}\right.$ $=11.5 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 4.45(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.9 \mathrm{~Hz})$, $4.53(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.65(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.79$ ($1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.9 \mathrm{~Hz}$), $5.12(1 \mathrm{H}, \mathrm{s}), 7.12-7.46(10 \mathrm{H}, \mathrm{m}) ; 1 \mathrm{R}$ (NaCl , neat) $3600-3200,1670,1450,1150 \mathrm{~cm}^{-1}$; mass spectrum, m / e $380\left(\mathrm{M}^{+}, 9.3\right), 292(12.4), 274$ (5.7), 183 (2.2), 91 (100).

1,4-Dibenzyl-3-(2'-thiopyridyl)-6-[$1^{\prime \prime}$-(hydroxymethyl) $\mathbf{3}^{\prime \prime}$-[((tert-bu-tyldimethylsilyl)oxy)propyl]]-2,5-piperazinedione (18), and 1,4-Di-
 $\mathbf{3}^{\prime \prime}$-(hydroxypropyl)]-2,5-piperazinedione (19). To a stirred solution of 13 ($34 \mathrm{mg}, 0.069$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added lert-butyldimethylsilyl chloride ($10.4 \mathrm{mg}, 0.069 \mathrm{mmol}$, 1.0 equiv) and solid (dimethylamino) pyridine ($1 \mathrm{~mol} \%$) followed by triethylamine ($0.01 \mathrm{~mL}, 0.069 \mathrm{mmol}, 1.0$ equiv). The mixture was stirred for 30 min , evaporated to dryness, and separated by PTLC silica gel (eluted with $100 \% \mathrm{EtOAc}$) to afford $16 \mathrm{mg}(63 \%)$ of 18 and 3.4 mg (13.5%) of 19.

Compound 18: ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.09(6 \mathrm{H}$, s), $0.91(9 \mathrm{H}, \mathrm{s}), 1.50-1.96(2 \mathrm{H}, \mathrm{m}), 2.24-2.56(2 \mathrm{H}, \mathrm{m}), 3.60-3.92(4$
$\mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.9$ $\mathrm{Hz}), 4.21(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.18(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.9 \mathrm{~Hz}), 5.38$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{s}), 7.02-7.62(13 \mathrm{H}, \mathrm{m})$, 8.39-8.45 (1 H, m); ${ }^{13} \mathrm{C}$ NMR (25 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 5.32,18.32,25.97$, $30.87,41.73,46.93,48.50,60.30,60.59,60.79,61.59,121.08,122.48$, $127.91,128.38,128.73,135.56,135.74,136.73,149.22,155.00,164.46$, 167.03; $1 \mathrm{R}\left(\mathrm{NaCl}\right.$, neat) $3600-3200,1675 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 503$ $\left(\mathrm{M}^{+}-102,1.7\right), 437(4.1), 355(5.2), 281(9.1), 149(34.4), 105(100)$, 91 (79.1).

Compound 19: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.12(6 \mathrm{H}$, s), $0.92(9 \mathrm{H}, \mathrm{s}), 1.6-2.0(2 \mathrm{H}, \mathrm{m}), 2.10-2.42(1 \mathrm{H}, \mathrm{m}), 3.60-3.96(5 \mathrm{H}$, m), $4.10(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.0 \mathrm{~Hz}), 4.22(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.0 \mathrm{~Hz})$, $4.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.22(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.0 \mathrm{~Hz}), 5.29(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.0 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{s}), 7.04-7.68(14 \mathrm{H}, \mathrm{m}), 8.40-8.48(1 \mathrm{H}, \mathrm{m})$; IR $\left(\mathrm{NaCl}\right.$, neat) $3600-3300,1675,1450 \mathrm{~cm}^{-1}$

1,4-Dibenzyl-3-(2^{\prime}-thiopyridyl)-6-[1"-[((tert-butyldiphenylsilyl)oxy)-methyl]-3"-[((tert-butyldimethylsilyl)oxy) propyl]]-2,5-piperazinedione (20). To a stirred solution of $18(35 \mathrm{mg}, 0.058 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) at room temperature was added (dimethylamino) pyridine ($1 \mathrm{~mol} \%$), tert-butyldiphenylsilyl chloride ($0.038 \mathrm{~mL}, 0.145 \mathrm{mmol}, 2.5$ equiv), and triethylamine ($0.01 \mathrm{~mL}, 0.07 \mathrm{mmol}, 1.2$ equiv). After stirring for 12 h , the mixture was evaporated to dryness and separated on PTLC silica gel (eluted with $1: 3 \mathrm{EtOAc} / \mathrm{hexanes}$) to afford 46 mg (94%) of $\mathbf{2 0}$ as an oil: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.048(6 \mathrm{H}, \mathrm{s}), 0.835$ ($9 \mathrm{H}, \mathrm{s}$), $1.093(9 \mathrm{H}, \mathrm{s}), 1.40-1.80(2 \mathrm{H}, \mathrm{m}), 2.08-2.22(1 \mathrm{H}, \mathrm{m})$, $3.00-3.55(2 \mathrm{H}, \mathrm{m}), 3.80-3.96(2 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7$ $\mathrm{Hz}), 4.16(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{br} s), 5.09(1 \mathrm{H}$, $\left.1 /{ }_{2} \mathrm{ABq}, J=14.7 \mathrm{~Hz}\right), 5.18(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{s})$, 6.92-7.67 (23 H, m), 8.40-8.46 (1 H, m); IR (NaCl , neat) 1670, 1450, $1150 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 732\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 0.3\right), 691(2.3), 675$ (9.6), 543 (3.2), 439 (4.4), 328 (65.0), 294 (7.7), 91 (100).

1,4-Dibenzyl-3-(2^{\prime}-thiopyridyl)-6-[$1^{\prime \prime}$-[((tert-butyldiphenylsilyl)oxy)-methyl]- $\mathbf{3}^{\prime \prime}$-(hydroxypropyl)]-2,5-piperazinedione (21). To a stirred solution of $\mathbf{2 0}(13 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.0$ equiv $)$ in THF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,2 \mathrm{~mL})$ at room temperature was added all at once excess HF .pyridine complex The mixture was stirred for 20 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, evaporated to dryness, and separated on PTLC silica gel (eluted with 1:9:89 $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $9 \mathrm{mg}(80 \%)$ of 21 as an oil which was carried on directly to 22.

8,10-Dibenzyl-8,10-diaza-5-[($($ tert-butyldiphenylsilyl)oxy)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (22). To a stirred solution of 21 (12 $\mathrm{mg}, 0.016 \mathrm{mmol}, 1.0$ equiv) in THF (0.5 mL) at room temperature was added solid silver triflate ($21.1 \mathrm{mg}, 0.08 \mathrm{mmol}, 5.0$ equiv). The mixture was stirred for 30 min at room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated on PTLC silica gel (eluted with $100 \% \mathrm{EtOAc}$) to afford $8 \mathrm{mg}(79 \%)$ of 22 as an oil: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ $\delta \mathrm{CHCl}_{3} 1.07(6 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{m}), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}\right.$ $\left.=5.5, J_{\mathrm{gem}}=12.0 \mathrm{~Hz}\right), 3.54-3.88(3 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8$ $\mathrm{Hz}), 4.15(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 5.12$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 5.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 5.19(1$ $\mathrm{H}, \mathrm{s}), 7.08-7.48(15 \mathrm{H}, \mathrm{m}), 7.48-7.76(5 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) 1670 , $1450,1150 \mathrm{~cm}^{-1}$, mass spectrum, $m / e 561\left(\mathrm{M}^{+}\right.$- tert-butyl, 74.0), 527 (39.1), 292 (2.7), 199 (17.5), 91 (100).

8,10-Dibenzyl-8,10-diaza-5-[((tert-butyldimethylsilyl) oxy) methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (23). To a stirred solution of 19 (279 $\mathrm{mg}, 0.461 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at room temperature was added solid AgOTf ($142.1 \mathrm{mg}, 0.5532 \mathrm{mmol}, 1.2$ equiv), and the mixture was stirred at room temperature. After 20 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes) to afford $172 \mathrm{mg}(91 \%)$ of 23 as an oil that was identical with that obtained from 15.

8,10-Dibenzyl-8,10-diaza-5-[((tert-butyldimethylsilyl)oxy)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione from 15. To a stirred solution of $\mathbf{1 5}$ and 16 ($274 \mathrm{mg}, 0.741 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL) at room temperature was added tert-butyldimethylsilyl triflate $(0.599 \mathrm{~mL}, 2.16$ $\mathrm{mmol}, 3.0$ equiv), and the mixture was stirred at room temperature After 12 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous sodium sulfate, filtered, concentrated, and separated on a silica gel flash column (eluted with 1:3 EtOAc/hexanes) to afford 170 mg (49%) of 23 as an oil.

Compound 23: ${ }^{1} \mathrm{H} \mathrm{NMR}(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.06(6 \mathrm{H}$, s), $0.89(9 \mathrm{H}, \mathrm{s}), 1.9-2.3(3 \mathrm{H}, \mathrm{m}), 3.41\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=5.5, J_{\mathrm{gem}}=9.8\right.$ $\mathrm{Hz}), 3.54\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}}=9.8 \mathrm{~Hz}\right), 3.76(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{m}), 4.09$
$(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 4.15(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.9 \mathrm{~Hz}), 4.22(1$ $\mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 5.10(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.9 \mathrm{~Hz}), 5.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.6 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{s}), 7.30(10 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR (25 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 5.32$ (q), 18.32 (s), 25.97 (q), 29.06 (t), 46.93 (t), 47.63 (t), 59.30 (t), 63.45 (d), 65.09 (t), 83.48 (d), 127.79 (d), 127.97 (d), 128.26 (d), 128.73 (d), 135.27 (s), 162.47 (s), 166.97 (s); 1 R (NaCl , neat) 1670, $1445,1052 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 479\left(\mathrm{M}^{+} \mathrm{CH}_{3}, 1.1\right), 437(44.6), 292$ (1.1), 208 (16.0), 91 (100).

1,4-Dibenzyl-3-(2'-thiopyridyl)-6-[1"-[((tert-butyldimethylsilyl) oxy)-methyl]- $3^{\prime \prime}$-(hydroxypropyl)]-2,5-piperazinedione (24) and 1,4-Di-benzyl-3-(2^{\prime}-thiopyridyl)-6-[$1^{\prime \prime}$-(hydroxymethyl) $-3^{\prime \prime}$-[((tert-butyldimethylsilyl)oxy) propyl]]-2,5-piperazinedione (25). To a stirred solution of $14\left(564 \mathrm{mg}, 1.15 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) at room temperature was added solid DMAP (2 mg), triethylamine $(0.162 \mathrm{~mL}, 1.15$ mmol, 1.0 equiv), and tert-butyldimethylsilyl chloride ($174.6 \mathrm{mg}, 1.15$ $\mathrm{mmol}, 1.0$ equiv), and the mixture was stirred at room temperature. After 24 h , the mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and separated by radial chromatography on silica gel (eluted with $1: 3 \mathrm{EtOAc} /$ hexanes) to afford $87 \mathrm{mg}(12.4 \%)$ of $\mathbf{2 5}, 318 \mathrm{mg}(46 \%)$ of $\mathbf{2 4}$, plus 132 mg (19.1%) of disilylated compound

Compound 24: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.11(6 \mathrm{H}$, s), $0.91(9 \mathrm{H}, \mathrm{s}), 1.8(2 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 3.60-3.75(5 \mathrm{H}, \mathrm{m}), 4.05$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 4.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 4.15(1$ $\mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 5.19(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 5.35(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=15.1 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{s}), 7.20(11 \mathrm{H}, \mathrm{m}), 7.35(2 \mathrm{H}, \mathrm{m}), 8.40(1 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(25 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 5.15$ (q), 18.3 (s), 26.03 (q), 31.22 (t), 42.55 (d), 46.87 (t), 49.73 (t), 60.50 (t$), 61.62$ (t$), 120.96$ (d), 122.77 (d), 127.79 (d), 128.32 (d), 128.67 (d), 129.02 (d), 135.56 (s), 135.91 (s), 136.31 (s), 149.22 (d), 155.23 (s), 164.46 (s), 166.68 (s); IR (NaCl , neat) $3600-3200,1670,1260 \mathrm{~cm}^{-1}$
Compound 25: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.14(6 \mathrm{H}$, s), $0.97(9 \mathrm{H}, \mathrm{s}), 1.80(2 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 3.01(1 \mathrm{H}, \mathrm{m}), 3.65-3.75$ $(4 \mathrm{H}, \mathrm{m}), 4.10(2 \mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.24(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.65$ $\mathrm{Hz}), 5.43(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.89 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{s}), 7.25(11 \mathrm{H}, \mathrm{m})$, $7.35(2 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{d}, J=4.64 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(25 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ $\delta \mathrm{CHCl}_{3} 5.382(\mathrm{q}), 18.14$ (s), 25.85 (q), 30.93 (t), $42.20(\mathrm{~d}), 46.52(\mathrm{t})$, 49.62 (t), 60.47 (t), 60.94 (t), 120.73 (d), 122.19 (d), 127.44 (d), 128.09 (d), 128.43 (d), 135.27 (s), 135.62 (s), 136.44 (d), 148.87 (d), 154.87 (s), 164.40 (s), 167.15 (s); IR (NaCl , neat) $3600-3200,1670,1260 \mathrm{~cm}^{-1}$.

1,4-Dibenzyl-3-($\mathbf{2}^{\prime}$-thiopyridyl)-6-[$1^{\prime \prime}$-[((methylsulfonyl)oxy)methyl]$3^{\prime \prime}$-[((tert-butyldimethylsilyl)oxy) propyl]]-2,5-piperazinedione (26). To a stirred solution of $\mathbf{2 4 a}(22 \mathrm{mg}, 0.526 \mathrm{mmol}, 1.0$ equiv) in THF (0.5 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.789 \mathrm{mmol}, 1.5$ equiv) followed by methanesulfonyl chloride ($0.06 \mathrm{~mL}, 0.789 \mathrm{mmol}, 1.5$ equiv) at room temperature. After 10 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes) to afford 25 mg (98%) of 26 as an oil: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CHCl}_{3} 0.10(6 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{m}), 3.64$ $(3 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{m}), 3.92(2 \mathrm{H}, \mathrm{m}), 3.93(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.9 \mathrm{~Hz})$, $4.02(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 5.16(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 5.45(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{s})$, $7.20-7.40(11 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{m}), 8.43(1 \mathrm{H}, \mathrm{d}, J=4.93 \mathrm{~Hz})$; IR (NaCl , neat) $1670,1450,1045 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 367\left(\mathrm{M}^{+}-91\right.$, 2.1), 272 (1.2), 181 (3.1), 91 (100).

8,10-Dibenzyl-8,10-diaza-5-methylene-2-oxabicyclo[4.2.2]decane-7,9dione (42a). To a stirred solution of mesylate (26a) ($18 \mathrm{mg}, 0.026 \mathrm{mmol}$, 1.0 equiv) in THF (1 mL) was added a solution of $\mathrm{PhHgClO}_{4}(0.058$ mmol, 2.2 equiv) in THF (2 mL), and the mixture was stirred for 22 min at room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and passed through a silica plug. The crude 28a was dissolved in THF (1.5 mL) at room temperature and $\mathrm{BH}_{3} \mathrm{PhSeNa}(0.03 \mathrm{mmol}, 1.1$ equiv, 1 mL of EtOH) was added, and the mixture was stirred 12 h and concentrated to dryness diluted with THF (5 mL) to afford crude 41a. Hydrogen peroxide (30%, $0.03 \mathrm{~mL}, 1.0$ equiv) was added, and the mixture was heated to reflux. After 20 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:3 EtOAc/hexanes) to afford 4.1 mg ($\mathbf{3 7 \%}$ overall) of 42a as an oil which was identical in every respect with that obtained from 40 a (see below).

8,10-Dibenzyl-8,10-diaza-5-(hydroxymethyl)-2-oxabicyclo[4.2.2]de-cane-7,9-dione (29). To a stirred solution of $19(82 \mathrm{mg}, 0.135 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ at room temperature was added solid AgOTf ($34.8 \mathrm{mg}, 0.135 \mathrm{mmol}, 1.0$ equiv), and the mixture was stirred at room temperature. After 35 min , the mixture was diluted with THF (1 mL)
and solid tetra- n-butylammonium fluoride ($102 \mathrm{mg}, 0.337 \mathrm{mmol}, 5.0$ equiv) was added. The mixture was stirred for 10 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and poured through a silica plug to afford $41.2 \mathrm{mg}(80 \%)$ of $\mathbf{2 9}$ as an oil. This was carried on to the next step without further purification. The structure of the alcohol was established by conversion to the selenide (41a) via the mesylate (28a).

8,10-Dibenzyl-8,10-diaza-1-methyl-5-[((tert-butyldimethylsilyl)oxy)-methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (30). To a stirred solution of 23 ($22 \mathrm{mg}, 0.047 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at $-78^{\circ} \mathrm{C}$ equipped with a constant N_{2} flow was added HMPA ($0.009 \mathrm{~mL}, 0.0517 \mathrm{mmol}$, 1.05 equiv) followed by a solution of LDA ($0.0517 \mathrm{mmol}, 1.05$ equiv) in THF (1 mL). The yellow enolate was stirred for 65 min at $-78^{\circ} \mathrm{C}$, at which time methyl iodide ($0.014 \mathrm{~mL}, 0.235 \mathrm{mmol}, 5$ equiv) was added. After 5 min , the mixture was warmed to room temperature, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous sodium sulfate, filtered, concentrated, and separated on PTLC silica gel (eluted with 1:3 EtOAc/hexanes) to afford 12 mg ($39 \%, 71 \%$ based on recovered starting material) of 30 as an oil: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $0.05(6 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}$, s), $1.66(3 \mathrm{H}, \mathrm{s}), 1.60-1.80(2 \mathrm{H}, \mathrm{m}), 1.93-2.33(1 \mathrm{H}, \mathrm{m}), 3.19-3.93(4$ $\mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.40(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=13.9 \mathrm{~Hz}), 5.08(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 7.26(5 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.32(5 \mathrm{H}, \mathrm{br} \mathrm{s})$; IR (NaCl , neat) 1670,1450, $1150 \mathrm{~cm}^{-1}$

8,10-Dibenzyl-8,10-diaza-1-[1'-hydroxy- $2^{\prime}, 3^{\prime}-O$-isopropylidene]-5[($($ tert-butyldimethylsilyl)oxy)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (31). To a stirred solution of $23(38 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) at $-100^{\circ} \mathrm{C}$ was added a solution of LDA ($0.089 \mathrm{mmol}, 1.1$ equiv) in THF (1 mL). After stirring the dark yellow enolate at $-100^{\circ} \mathrm{C}$ for $5 \mathrm{~min},(\pm)$-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde (0.035 mL , $0.243 \mathrm{mmol}, 3.0$ equiv) was added, and the mixture was stirred 2 min at $-100^{\circ} \mathrm{C}$ and then warmed to room temperature. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:5 EtOAc/hexanes) to give $6.3 \mathrm{mg}(13 \%, 80 \%$ based on recovered starting material) of 31 as an oil. Compound 31 was very difficult to separate from starting material and was carried on as a mixture to the next step.

8,10-Dibenzyl-8,10-diaza-1-[1'-O-(tert-butyldimethylsilyl)-2', 3' O isopropylidene $]-5-[(($ tert -butyldimethylsilyl)oxy)methyl]-2-oxabicyclo-[4.2.2]decane-7,9-dione (32). To a stirred solution of 31 ($7.8 \mathrm{mg}, 0.012$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) at room temperature was added 2,6-lutidine ($0.003 \mathrm{~mL}, 0.024 \mathrm{mmol}, 2.0$ equiv) followed by tert-butyldimethylsilyl triflate ($0.005 \mathrm{~mL}, 0.018 \mathrm{mmol}, 1.5$ equiv). After stirring 2 h at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:3 EtOAc/hexanes) to afford $9 \mathrm{mg}(99 \%)$ of 32 as an oil: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CHCl}_{3} 0.021(3 \mathrm{H}, \mathrm{s}), 0.026(3 \mathrm{H}, \mathrm{s}), 0.029(3 \mathrm{H}, \mathrm{s}), 0.104(3 \mathrm{H}, \mathrm{s})$, $0.855(9 \mathrm{H}, \mathrm{s}), 0.918(9 \mathrm{H}, \mathrm{s}), 1.020(3 \mathrm{H}, \mathrm{s}), 1.284(3 \mathrm{H}, \mathrm{s}), 1.297(3$ $\mathrm{H}, \mathrm{s}), 1.40-1.655(2 \mathrm{H}, \mathrm{m}), 2.16(1 \mathrm{H}, \mathrm{m}), 3.39\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=5.9, J_{\text {gem }}\right.$ $=10.1 \mathrm{~Hz}), 3.528-3.783(3 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6 \mathrm{~Hz}), 3.76$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.14(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6 \mathrm{~Hz}), 4.13(1$ $\mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.2 \mathrm{~Hz}), 4.745(1 \mathrm{H}, \mathrm{s}), 4.91(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=15.2 \mathrm{~Hz}), 5.35(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 7.18-7.56(10$ $\mathrm{H}, \mathrm{m}) ;$ IR (NaCl , neat) $1670,1370,1130,1080 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 737$ (1.0), 696 (2.6), 637 (3.4), 581 (23.9), 517 (1.9), 436 (2.5), 201 (5.2), 145 (2.0), 91 (100).

8,10-Dibenzyl-8,10-diaza-1-[1'-O-(tert-butyldimethylsilyl) $-\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-O$ -isopropylidene]-5-[((tert-butyldimethylsilyl)oxy) methyl]-6-hydroxy-2-ox-abicyclo[4.2.2]decane-7,9-dione (33). To a stirred solution of 32 (15 mg , $0.021 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) at $-100^{\circ} \mathrm{C}$ was added tert-butyllithium ($0.005 \mathrm{~mL}, 0.023 \mathrm{mmol}, 1.1$ equiv), and the resulting dark enolate was stirred at $-100^{\circ} \mathrm{C}$ for 2 min . A steady stream of O_{2} was bubbled through the mixture for 10 min . The mixture was stirred 10 min at $-100^{\circ} \mathrm{C}$, allowed to warm to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes) to afford $12 \mathrm{mg}(78 \%)$ of 33 as an oil: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CHCl}_{3} 0.03(6 \mathrm{H}, \mathrm{s}), 0.10(6 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.02(3$ $\mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 2.15(2 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{dd}, J=5.9$, $10.1 \mathrm{~Hz}), 3.60(2 \mathrm{H}, \mathrm{m}), 3.67(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6 \mathrm{~Hz}), 3.70(2 \mathrm{H}$, m), $3.76(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.11(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6 \mathrm{~Hz})$, $4.13(1 \mathrm{H}, \mathrm{s}), 4.65\left(1 \mathrm{H}, 1 /{ }_{2} \mathrm{ABq}, J=15.2 \mathrm{~Hz}\right), 4.74\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $4.91(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.2 \mathrm{~Hz}), 5.34\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{ABq}, J=14.5 \mathrm{~Hz}\right)$,
7.20-7.50 ($10 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3500-3200,1670,1450,1150$ cm^{-1}; mass spectrum, $m / e 754\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1.3\right), 712\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 0.9\right)$, $638\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}, 11.2\right), 581$ (33), 437 (43.8), 129 (3), 91 (100).

8,10-Dibenzyl-8,10-diaza-1-[1^{\prime}-hydroxy- $\mathbf{2}^{\prime}, 3^{\prime}$ - O-isopropylidene]-5-(hy-droxymethyl)-6-hydroxy-2-oxabicyclo[4.2.2]decane-7,9-dione (34). To a stirred solution of $33(22 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at room temperature was added tetra- n-butylammonium fluoride (37.38 $\mathrm{mg}, 0.143 \mathrm{mmol}, 5.0$ equiv). The mixture was stirred for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated on PTLC silica gel (eluted with 1:9:89 $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 11 mg (71%) of 34 as an oil: ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.28(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.39$ ($3 \mathrm{H}, \mathrm{s}$), 2.00-2.15 ($3 \mathrm{H}, \mathrm{m}$), $2.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.23-3.39(5 \mathrm{H}$, m), $3.56(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 4.18$ $(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.68(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=16.0 \mathrm{~Hz}), 5.01(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.0 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{d}, J=10.2$ $\mathrm{Hz}, \mathrm{D}_{2} \mathrm{O}$ exch $), 6.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 7.40(10 \mathrm{H}, \mathrm{m}) ; 1 \mathrm{R}(\mathrm{NaCl}$, neat) $3600-3200,1650,1050 \mathrm{~cm}^{-1}$.

8-Benzyl-8,10-diaza-5-[((tert-butyldimethylsilyl)oxy)methyl]-2-oxa-bicyclo[4.2.2]decane-7,9-dione (36) and 8,10-Dibenzyl-8,10-diaza-1-[tert-butyldimethylsilyl]-5-[i(tert-butyldimethylsilyl)oxy)methyl]-2-oxa-bicyclo[4.2.2]decane-7,9-dione (35). To a stirred solution of 23 (109 mg , 0.233 mmol , 1.0 equiv) in THF (2 mL) at $-78^{\circ} \mathrm{C}$ was added a solution of LDA ($0.267 \mathrm{mmol}, 1.1$ equiv) in THF (1 mL), and the dark brown enolate was stirred for 15 min . Solid tert-butyldimethylsilyl chloride $(175.5 \mathrm{mg}, 1.16 \mathrm{mmol}, 5.0$ equiv) was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$. After 20 min , the mixture was warmed to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:4 EtOAc/hexanes) to afford 32 mg ($27 \%, 42 \%$ based on starting material) of 35 and 19 mg ($22 \%, 41.26 \%$ based on recovered starting material) of 36 as an oil.

Compound 36: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.012(3 \mathrm{H}$, s), $0.014(3 \mathrm{H}, \mathrm{s}), 0.821(9 \mathrm{H}, \mathrm{s}), 1.48-1.58(1 \mathrm{H}, \mathrm{m}), 1.78-1.87(1 \mathrm{H}$, $\mathrm{m}), 2.02-2.16(1 \mathrm{H}, \mathrm{m}), 3.39\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{vic}}=6.6, J_{\mathrm{gem}}=9.8 \mathrm{~Hz}\right), 3.62$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=J_{\text {gem }}=9.8 \mathrm{~Hz}\right), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=8.9, J_{\text {gem }}=13.6\right.$ $\mathrm{Hz}), 3.90\left(1 \mathrm{H}\right.$, dd, $\left.J_{\text {vic }}=7.4, J_{\text {gem }}=13.6 \mathrm{~Hz}\right), 4.06(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=14.7 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=2.5,4.3 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{s}), 5.09(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{br} s), 7.19-7.29(5 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3400,1670,1050 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 389\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 0.9\right)$, 347 (10.3), 317 (0.3), 241 (0.3), 179 (28.2), 135 (100), 91 (36.8).

Compound 35: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.11(3 \mathrm{H}$, s), $0.025(3 \mathrm{H}, \mathrm{s}), 0.054(6 \mathrm{H}, \mathrm{s}), 0.57(9 \mathrm{H}, \mathrm{s}), 0.924(9 \mathrm{H}, \mathrm{s}), 1.74(2$ $\mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 3.43(1 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{m}), 3.73$ $(1 \mathrm{H}, \mathrm{bs}), 3.80(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.40(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 4.77(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 5.34(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 7.20-7.30(10 \mathrm{H}, \mathrm{m})$; IR $(\mathrm{NaCl}$, neat) 1670 , $1450,1020 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 609\left(\mathrm{M}^{+}, 609\right), 567$ (19.0), 213 (1.6), 179 (3.4), 149 (25.5), 91 (83.1), 75 (100).

8-Benzyl-10-[(tert-butyldimethylsilyl)benzyl]-8,10-diaza-5-[(tert -bu-tyldimethylsilyl)oxy)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (37). To a stirred solution of 23 ($21 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.0$ equiv) in THF (2.5 $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LDA ($0.049 \mathrm{mmol}, 1.1$ equiv) in THF (1.5 mL). The dark yellow solution was stirred for 5 min at -78 ${ }^{\circ} \mathrm{C}$ and then solid trimethylsilyl chloride ($6 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.1$ equiv) was added and the mixture was warmed to room temperature. The mixture was then cooled to $-78^{\circ} \mathrm{C}$, a solution of LDA ($0.049 \mathrm{mmol}, 1.1$ equiv) in THF (0.5 mL) was added followed by solid MoOPh (97 mg , $0.224 \mathrm{mmol}, 5.0$ equiv), the mixture was stirred 10 min at $-78^{\circ} \mathrm{C}$, warmed to room temperature over 20 min , and then solid ($n-\mathrm{Bu})_{4} \mathrm{NF}$ $(11.7 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.0$ equiv) was added. After 1 h at room temperature, the mixture was concentrated to dryness and separated by PTLC silica gel (eluted with $1: 2$ hexanes/EtOAc) to afford 12 mg ($41.2 \%, 54.7 \%$ based on recovered starting material) of 37 as an oil: ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.007(3 \mathrm{H}, \mathrm{s}), 0.12(12 \mathrm{H}, \mathrm{s}), 0.86$ $(9 \mathrm{H}, \mathrm{s}), 1.42-1.60(2 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{m}), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.8\right.$, $\left.J_{\text {gem }}=9.8 \mathrm{~Hz}\right), 3.37(1 \mathrm{H}, \mathrm{s}), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.8, J_{\text {gem }}=9.8 \mathrm{~Hz}\right)$, $3.83(2 \mathrm{H}, \mathrm{dd}, J=4.5 \mathrm{~Hz}), 4.06\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{ABq}, J=14.9 \mathrm{~Hz}\right), 4.42(\mathrm{l}$ $\mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.9 \mathrm{~Hz})$, $7.18-7.38(10 \mathrm{H}, \mathrm{m}) ; 1 \mathrm{R}\left(\mathrm{NaCl}\right.$, neat) $1670,1450 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 566\left(\mathrm{M}^{+}, 22.4\right), 509(22.1), 475$ (11.8), 449 (18.3), 437 (18.3), 260 (10.1), 91 (100), 57 (35.3).

8-Benzyl-10-benzoyl-8,10-diaza-[$\mathbf{1}^{\prime}$ - O-(tert-butyldimethylsilyl)- $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ -O-isopropylidene $]$-5-[((tert-butyldimethylisilyl)oxy)methyl]-2-oxabicyclo-[4.2.2]decane-7,9-dione (38). To a stirred solution of $32(62 \mathrm{mg}, 0.085$ mmol, 1.0 equiv) in THF (5 mL) at $-100^{\circ} \mathrm{C}$ was added tert-butyllithium ($0.04 \mathrm{~mL}, 0.0941 \mathrm{mmol}, 1.1$ equiv), and the resulting yellow enolate was stirred for 10 min at $-100^{\circ} \mathrm{C}$. A steady stream of O_{2} was bubbled
through the mixture for 30 min at $-100^{\circ} \mathrm{C}$ and 30 min at room temperature. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated on PTLC silica gel (eluted with $1: 5$ EtOAc/hexanes) to afford 22 mg ($35 \%, 68 \%$ based on starting material) of 38 as an oil. (NOTE: It is difficult by NMR to establish which of the two N-benzyl groups was oxidized. The structure chosen corresponds to the least hindered approach of the base.)
${ }^{1} \mathrm{H} \mathrm{NMR}(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.092(3 \mathrm{H}, \mathrm{s}), 0.067(3 \mathrm{H}$, s), $0.056(3 \mathrm{H}, \mathrm{s}), 0.116(3 \mathrm{H}, \mathrm{s}), 0.079(9 \mathrm{H}, \mathrm{s}), 0.932(9 \mathrm{H}, \mathrm{s}), 1.26$ ($3 \mathrm{H}, \mathrm{s}$) , $1.350(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.50-2.00(2 \mathrm{H}, \mathrm{m}), 2.56-2.70$ $(1 \mathrm{H}, \mathrm{m}), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.1, J_{\mathrm{gem}}=9.8 \mathrm{~Hz}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}\right.$ $\left.=10.0, J_{\text {gem }}=9.8 \mathrm{~Hz}\right), 3.45-3.70(2 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6$ $\mathrm{Hz}), 4.08(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 4.62$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.2 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.2$ $\mathrm{Hz}), 7.15-7.56(10, \mathrm{~m})$; IR (NaCl , neat) $1680,1400,1250,1100 \mathrm{~cm}^{-1}$.

8,10-Dibenzyl-8,10-diaza-5-[(methylsulfonyl)methyl]-2-oxabicyclo[4.2.2 decane-7,9-dione (39a). To a stirred solution of 15 and $16(54 \mathrm{mg}$, $0.142 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at $0^{\circ} \mathrm{C}$ was added triethylamine ($0.02 \mathrm{~mL}, 0.156 \mathrm{mmol}, 1.1$ equiv), and the mixture was stirred at $0^{\circ} \mathrm{C}$. After 10 min , mesyl chloride ($0.018 \mathrm{~mL}, 0.156 \mathrm{mmol}, 1.1$ equiv) was added and the mixture was stirred an additional 10 min at $0^{\circ} \mathrm{C}$, diluted with ether, filtered, concentrated, and separated by PTLC silica gel (eluted with 4:1 EtOAc/hexanes) to afford 57 mg (87.5%) of mesylates as a mixture of oils. Pure 39a was obtained by recovery from the subsequent selenide displacement on the mixture of mesylates: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.50-1.60(1 \mathrm{H}, \mathrm{m}), 1.79-1.89(1 \mathrm{H}, \mathrm{m})$, $2.36-2.44(1 \mathrm{H}, \mathrm{m}), 2.98(3 \mathrm{H}, \mathrm{s}), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.1, J_{\mathrm{gem}}=13.8\right.$ $\mathrm{Hz}), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=7.3, J_{\mathrm{gem}}=13.8 \mathrm{~Hz}\right), 4.09\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=5.7\right.$, $\left.J_{\mathrm{gem}}=10.5 \mathrm{~Hz}\right), 4.13-4.16(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 5.06$ $\left(2 \mathrm{H}\right.$, twice, $\left.{ }^{1} / 2 \mathrm{ABq}, J=15.0 \mathrm{~Hz}\right), 5.10\left(2 \mathrm{H}\right.$, twice ${ }^{1} / 2 \mathrm{ABq}, J=14.9$ $\mathrm{Hz}), 5.21(1 \mathrm{H}, \mathrm{s}), 7.20-7.38(10 \mathrm{H}, \mathrm{m})$; IR (NaCl, neat) 1672,1450 , $1150 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 458\left(\mathrm{M}^{+}, 4.7\right), 363(1.3), 353(9.2), 261$ (1.9), 218 (4.1), 167 (52.8), 121 (12.1), 91 (100).

8,10-Dibenzyl-8,10-diaza-5-[(phenylselenyl)methyl]-2-oxabicyclo-[4.2.2]decane-7,9-dione (40a). To a stirred solution of diphenyl diselenide ($18 \mathrm{mg}, 0.057 \mathrm{mmol}, 1.05$ equiv) in $\mathrm{EtOH}(1 \mathrm{~mL})$ at room temperature was added solid sodium borohydride ($43 \mathrm{mg}, 0.115 \mathrm{mmol}, 2.1$ equiv), and the mixture was stirred until H_{2} evolution had stopped. After 30 min , the selenide salt was transferred to a stirred solution of 39 a ($25 \mathrm{mg}, 0.055$ mmol, 1.0 equiv) in $\mathrm{EtOH}(1 \mathrm{~mL})$ at room temperature, and the mixture was warmed to $45^{\circ} \mathrm{C}$. After 20 min , it was cooled to room temperature, evaporated to dryness and separated by PTLC silica gel (1:1 EtOAc/ hexanes) to afford $22 \mathrm{mg}(78 \%)$ of 40 a as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}(360 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.60-1.78(1 \mathrm{H}, \mathrm{m}), 1.90-2.01(1 \mathrm{H}, \mathrm{m}), 2.00-2.17$ $(1 \mathrm{H}, \mathrm{m}), 2.80-2.94(1 \mathrm{H}, \mathrm{m}), 3.00-3.11(1 \mathrm{H}, \mathrm{m}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=$ $10.8,14.4 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{dd}, J=7.2,14.4 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{d}, J=2.5$ $\mathrm{Hz}), 3.88(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.7 \mathrm{~Hz}), 4.18(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.7 \mathrm{~Hz})$, $5.02(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.7 \mathrm{~Hz}), 5.06(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.7 \mathrm{~Hz}), 5.17$ ($1 \mathrm{H}, \mathrm{s}$), $7.2-7.6(15 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $1670,1430,1050 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 520(6.3), 429(0.2), 363$ (8.9), 292 (4.3), 91 (100); ${ }^{13} \mathrm{C}$ NMR $(25 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 30.46(\mathrm{t}), 32.92(\mathrm{t}), 43.89(\mathrm{~d}), 47.28(\mathrm{t})$, 47.58 (t), 61.57 (d), 64.10 (t), 83.36 (d), 127.04 (d), 127.80 (d), 127.97 (d), $128.20,128.55$ (d), 128.67 (d), 129.14 (d), 129.47 (d), 132.17 (s), 135.03 (s), 162.36 (s), 166.62 (s).

8,10-Dibenzyl-8,10-diaza-5-methylene-2-oxabicyclo[4.2.2]decane-7,9dione (42a). To a stirred solution of 40 a ($154 \mathrm{mg}, 0.291 \mathrm{mmol}, 1.0$ equiv) in THF (3.5 mL) at room temperature was added 30% hydrogen peroxide ($0.045 \mathrm{~mL}, 1.48 \mathrm{mmol}, 5.0$ equiv), and the temperature was brought to reflux. After 45 min , the mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes) to afford $96 \mathrm{mg}(90 \%)$ of 42a as an oil: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 2.18-2.28(1 \mathrm{H}, \mathrm{m}), 2.35$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}=16.4, J_{\mathrm{vic}}=6.9 \mathrm{~Hz}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}=13.4, J_{\mathrm{vic}}=\right.$ $9.0 \mathrm{~Hz}), 3.77\left(1 \mathrm{H}\right.$, dd, $\left.J_{\text {gem }}=13.4, J_{\text {vic }}=6.9 \mathrm{~Hz}\right), 3.84(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.6 \mathrm{~Hz}), 4.13(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{s}), 4.92(1$ $\left.\mathrm{H}, 1 /{ }_{2} \mathrm{ABq}, J=14.6 \mathrm{~Hz}\right), 5.01(1 \mathrm{H}, \mathrm{s}), 5.09(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5$ $\mathrm{Hz}), 5.10(1 \mathrm{H}, \mathrm{s}), 5.20(1 \mathrm{H}, \mathrm{s}), 7.12-7.32(10 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR $(25$ $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 34.92(\mathrm{t}), 47.51(\mathrm{t}), 47.98(\mathrm{t}), 63.40(\mathrm{t}), 65.32(\mathrm{~d})$, 83.89 (d), 119.68 (t), 128.61 (d), 128.50 (d), 127.95 (d), 134.33 (s), 134.68 (s), 142.86 (s), 166.97 (s), 164.23 (s); $1 \mathrm{R}(\mathrm{NaCl}$, neat) 1675 , $1660,1150 \mathrm{~cm}^{-1}$; mass spectrum, m/e $362\left(\mathrm{M}^{+}, 11.5\right), 271(2.3), 91$ (100).

8,10-Dibenzyl-8,10-diaza-5-methylene-6-hydroxy-2-oxabicyco[4.2.2]-decane-7,9-dione (43a). To a stirred solution of 42a ($54 \mathrm{mg}, 0.149 \mathrm{mmol}$, 1.0 equiv) in THF (2 mL) at $-100^{\circ} \mathrm{C}$ was added HMPA (0.54 mL , $0.298 \mathrm{mmol}, 2.0$ equiv) followed by n-butyllithium ($0.09 \mathrm{~mL}, 0.179$
mmol, 1.2 equiv), and the dark brown anion was stirred at $-100^{\circ} \mathrm{C}$ for 15 min . A steady flow of O_{2} was bubbled through the mixture for 15 \min at $-100^{\circ} \mathrm{C}$, and then it was warmed to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:3 $\mathrm{EtOAc} /$ hexanes) to afford 20 mg ($35.5 \%, 63.7 \%$ based on recovered starting material) of 43 a as an oil: ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CHCl}_{3} 2.12\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.8, J_{\mathrm{gem}}=16.6 \mathrm{~Hz}\right), 2.31\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}\right.$ $\left.=16.6, J_{\text {vic }}=7.2 \mathrm{~Hz}\right), 3.31\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }}=13.1, J_{\text {vic }}=9.8 \mathrm{~Hz}\right), 3.84$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }}=13.1, J_{\text {vic }}=7.2 \mathrm{~Hz}\right), 4.27(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.1 \mathrm{~Hz})$, $4.47(1 \mathrm{H}, / 2 / 2 \mathrm{ABq}, J=14.1 \mathrm{~Hz}), 4.64(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.1 \mathrm{~Hz}), 4.94$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch $), 4.99(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{s}), 5.24$ ($1 \mathrm{H}, \mathrm{s}$), $5.60(1 \mathrm{H}, \mathrm{s}), 7.20-7.50(10 \mathrm{H}, \mathrm{m})$; IR $(\mathrm{NaCl}$, neat) $3600-3200$, $1670,1660,1250 \mathrm{~cm}^{-1}$, mass spectrum, $m / e 378\left(\mathrm{M}^{+}, 1.0\right), 294$ (2.2), 133 (12.1), 111 (24.1), 91 (72.6), 57 (100).
$\boldsymbol{N}, \boldsymbol{N}$-Dibenzyl- $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ - \boldsymbol{O}-isopropylidenebicyclomycin (44a). To a stirred solution of 43 a ($24 \mathrm{mg}, 0.063 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at -100 ${ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(0.08 \mathrm{~mL}, 0.152 \mathrm{mmol}, 2.4$ equiv), and the dark enolate was stirred at $-100^{\circ} \mathrm{C}$. After $10 \mathrm{~min},(\pm)-2,2,4$-trimethyl-1,3-dioxolane-4-carboxaldehyde ($0.045 \mathrm{~mL}, 0.317 \mathrm{mmol}, 1.5$ equiv) was added, and the mixture was allowed to warm to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with $1: 3 \mathrm{EtOAc} /$ hexanes) to afford $16 \mathrm{mg}(48.2 \%, 67.7 \%$ based on recovered starting material) of 44a as an oil: ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.34(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.98-2.12$ $(2 \mathrm{H}, \mathrm{m}), 2.79\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}=13.7, J_{\mathrm{vic}}=1.8 \mathrm{~Hz}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}\right.$ $\left.=13.7, J_{\text {vic }}=7.1 \mathrm{~Hz}\right), 3.77(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=9.3 \mathrm{~Hz}), 4.10(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=9.3 \mathrm{~Hz}), 4.32(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.5 \mathrm{~Hz}), 4.58(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=13.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.68(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=15.3 \mathrm{~Hz}), 5.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 5.13(1 \mathrm{H}, \mathrm{s}), 5.17(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=15.3 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{s}), 6.50\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $7.20-7.58(10 \mathrm{H}, \mathrm{s})$; IR (NaCl , neat) $3600-3200,1675,1660,1250 \mathrm{~cm}^{-1}$.
syn-1,4-Bis(p-methoxybenzyl)-3-(2^{\prime}-thiopyridyl)-6-[$1^{\prime \prime}$-(hydroxy-methyl)- $\mathbf{3}^{\prime \prime}$-(hydroxypropyl)]-2,5-piperazinedione (51). To a stirred solution of major syn lactone $47^{13}(600 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.0$ equiv) in THF $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ equipped with a constant N_{2} flow was added all at once solid LiAlH ($20.85 \mathrm{mg}, 0.549 \mathrm{mmol}, 2.0$ equiv). Immediately following addition, the mixture was quenched with excess $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, warmed to room temperature, and stirred for 1 h . The suspension was then filtered, concentrated, and separated on PTLC silica gel by using a chromatron (eluted with EtOAc) to afford $197 \mathrm{mg}(33 \%, 40 \%$ by conversion) of 51 as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.72$ ($1 \mathrm{H}, \mathrm{m}$), $1.91(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 3.58-3.76(6 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}$, s), $3.80(3 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=15.4 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 5.18(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4$ $\mathrm{Hz}), 5.28(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{s}), 6.83(4 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}), 7.16(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{m}), 8.52$ (1 H, d, J = 3.4 Hz); IR (NaCl , neat) $3600-3100,1660,1510,1240$, $1025 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 503\left(\mathrm{M}^{+}-48,0.5\right), 429(0.7), 198$ (11.9), 121 (100), 111 (25.8).
anti-1,4-Bis (p-methoxybenzyl)-3-(2^{\prime}-thiopyridyl)-6-[$1^{\prime \prime}$-(hydroxy-methyl)- $\mathbf{3}^{\prime \prime}$-(hydroxypropyl)]-2,5-piperazinedione (52). To a stirred solution of $48\left(850 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0\right.$ equiv) in THF (180 mL) at $0^{\circ} \mathrm{C}$ was added solid $\mathrm{LiAlH}_{4}(30.14 \mathrm{mg}, 0.79 \mathrm{mmol}, 2.0$ equiv). The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, warmed to room temperature, filtered, concentrated, and separated by silica gel flash column to afford 128 mg ($15 \%, 21 \%$ based on recovered starting material) of 52 as an oil. NOTE; An alternative procedure was utilized in which the LiAlH_{4} was added in 0.25 -equiv portions over a period of an hour at $0{ }^{\circ} \mathrm{C}$, resulting in substantial increase in the yield (51%): ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.80-1.90(1 \mathrm{H}, \mathrm{m}), 1.90-1.92$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{D}_{2} \mathrm{O}$ exch $), 1.90-1.93(1 \mathrm{H}, \mathrm{m}), 2.36-2.40(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}$, s), $3.80(3 \mathrm{H}, \mathrm{s}), 3.80-3.95(4 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.3 \mathrm{~Hz})$, $4.13(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 4.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{D}_{2} \mathrm{O}$ exch $), 5.17(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.3 \mathrm{~Hz}), 5.22(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=14.8 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{s}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}, J=$ $8.9 \mathrm{~Hz}), 7.05-7.15(2 \mathrm{H}, \mathrm{m}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{m}), 8.52(1 \mathrm{H}, \mathrm{m}) ; 1 \mathrm{R}(\mathrm{NaCl}$, neat $) 3600-3100$, $1660 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 440\left(\mathrm{M}^{+}-111,0.6\right), 198(5.7), 111$ (13.1), 84 (100).
syn-1,4-Bis (p-methoxybenzyl)-3-(2'-thiopyridyl)-6-[1" - (hydroxy-methyl)- $\mathbf{3}^{\prime \prime}$-(hydroxypropyl)]-2,5-piperazinedione (53). To a stirred solution of $49\left(1.102 \mathrm{~g}, 2.014 \mathrm{mmol}, 1.0\right.$ equiv) in THF (100 mL) at $0^{\circ} \mathrm{C}$ was added solid $\mathrm{LiAlH}_{4}(38.2 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.5$ equiv) and the solution was stirred for 15 min at $0^{\circ} \mathrm{C}$, quenched with excess $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, warmed to room temperature, filtered, concentrated, and separated by silica gel flash column (eluted with 100% EtOAc) to afford $185 \mathrm{mg}(17 \%$,
19% based on recovered starting material) of 53 as an oil: ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{TMS} 2.18-2.28(2 \mathrm{H}, \mathrm{m}), 2.95-3.01(1 \mathrm{H}, \mathrm{m})$, $3.20-3.40(1 \mathrm{H}, \mathrm{m}), 3.50-3.90(5 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s})$, $3.92(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 4.00(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.10$ ($1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), $5.11(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 5.34(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{s}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.80(2$ $\mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.11(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $7.20-7.32(2 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{m}), 8.46(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz})$; IR $(\mathrm{NaCl}$, neat) $3600-3100,1670,1420,1050 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 441\left(\mathrm{M}^{+}\right.$ - 110, 0.8), 426 (2.1), 354 (0.9), 121 (100), 110 (43.2).

8,10-Bis(p-methoxybenzyl)-8,10-diaza-5-(hydroxymethyl)-2-oxabicy-clo[4.2.2]decane-7,9-dione (54) and 7,9-Bis (p-methoxybenzyl)-7,9-dia-za-4-(2'-(hydroxyethyl))-2-oxabicyclo $[3.2 .2$ nonane-6,8-dione (55) from 51. To a stirred solution of major syn-diol $51(316 \mathrm{mg}, 0.573 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) at $25^{\circ} \mathrm{C}$ was added AgOTf ($294.7 \mathrm{mg}, 1.147$ mmol, 2.0 equiv) in one portion. The milky-white solution was stirred for 15 min , poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and separated on PTLC silica gel (eluted with EtOAc) to afford 198 mg (78% yield) of a $3: 2$ mixture of eight-(54) and seven-membered (55) ring alcohols.

Compound 54: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.80(1 \mathrm{H}$, m), $2.08(1 \mathrm{H}, \mathrm{m}), 3.70-3.90(6 \mathrm{H}, \mathrm{m}), 3.79(6 \mathrm{H}, \mathrm{s}), 4.16(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.5 \mathrm{~Hz}), 4.21(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=3.2$ $\mathrm{Hz}), 4.88(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.93(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz})$, $5.20(1 \mathrm{H}, \mathrm{s}), 6.83(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.20$ $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$; IR (NaCl , neat) $3600-3200,1668,1510,1230$ cm^{-1}; mass spectrum, $m / e 440\left(\mathrm{M}^{+}, 1.9\right), 389(2.0), 352(1.6), 319$ (1.7), 198 (1.4), 121 (100).

Compounbd 55: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3} \delta \mathrm{CHCl}_{3} 1.40-1.75(2\right.$ $\mathrm{H}, \mathrm{m}), 1.80-1.90(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 3.27\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=8.5, J_{\mathrm{gem}}\right.$ $=13.2 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=4.64, J_{\text {gem }}\right.$ $=13.16 \mathrm{~Hz}), 3.78(6 \mathrm{H}, \mathrm{s}), 3.94(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 4.43(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.5 \mathrm{~Hz}), 4.45(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.59(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=14.5 \mathrm{~Hz}), 4.63(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{s}), 6.85(2 \mathrm{H}$, $\mathrm{d}, J=5.5 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.21(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$; IR (NaCl , neat) $3600-3200,1668,1510,1230$ cm^{-1}; mass spectrum, $m / e 440\left(\mathrm{M}^{+}, 2.1\right), 389(0.7), 121$ (100).

8,10-Bis(p-methoxybenzyl)-8,10-diaza-5-(hydroxymethyl)-2-oxabicy-clo[4.2.2]decane-7,9-dione (54) and 7,9-Bis(p-methoxybenzyl)-7,9-dia-za-4-(2'-(hydroxyethyl))-2-oxabicyclo[3.2.2]nonane-6,8-dione (55) from 52. To a stirred solution of major anti-diol $52(128 \mathrm{mg}, 0.232 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) was added AgOTf ($119 \mathrm{mg}, 0.464 \mathrm{mmol}, 2.0$ equiv) at $25^{\circ} \mathrm{C}$. The milky-white solution was stirred for 15 min , poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and separated on PTLC silica gel (eluted with EtOAc) to afford a mixture of the bicyclic alcohols ($82 \mathrm{mg}, 80 \%$ yield, $10: 1$ ratio of the eight-mem-bered/seven-membered ring alcohols 54 and 55 , respectively) (calculated by NMR integration of bridgehead methine's adjacent to the bridging oxygen atom).

8,10-Bis (p-methoxybenzyl)-8,10-diaza-5-[((tert-butyldimethylsilyl)-oxy)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (27b). To a stirred solution of $25 \mathrm{~b}(20 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0$ equiv) in THF (1.2 mL) at room temperature was added solid silver triflate ($15 \mathrm{mg}, 0.06 \mathrm{mmol}, 2.0$ equiv), and the mixture was stirred at room temperature. After 22 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:1 EtOAc/hexanes) to afford $11 \mathrm{mg}(66 \%)$ of 27b as an oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $0.09(3 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s})$, $0.92(9 \mathrm{H}, \mathrm{s}), 1.60-1.80(2 \mathrm{H}, \mathrm{m}), 2.20-2.40(1 \mathrm{H}, \mathrm{m}), 3.38-3.48(2 \mathrm{H}$, $\mathrm{m}), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=6.4, J_{\mathrm{gem}}=10.7 \mathrm{~Hz}\right), 3.80(6 \mathrm{H}, \mathrm{s}), 3.80-3.90$ $(1 \mathrm{H}, \mathrm{m}), 3.86\left(1 \mathrm{H}, 1 /{ }_{2} \mathrm{ABq}, J=14.2 \mathrm{~Hz}\right), 4.03(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6$ $\mathrm{Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 4.96(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.2 \mathrm{~Hz}), 5.17$ $(1 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $6.83(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.11(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.14(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}) ; \mathrm{IR}(\mathrm{NaCl}$, neat $) 1680,1515,1247,1030 \mathrm{~cm}^{-1}$, mass spectrum, $m / e 503\left(\mathrm{M}^{+}-48,0.5\right), 429(0.7), 198$ (11.9), 121 (100), 111 (25.8).

1,4-Bis (p-methoxybenzyl)-3-(2'-thiopyridyl)-6-[1"-(hydroxy-methyl)-3'-[((tert-butyldimethylsilyl) oxy) propyl]]-2,5-piperazinedione (24b) and 1,4 -Bis (p-methoxybenzyl)-3-(2'-thiopyridyl)-6-[1" $-[(($ tert butyldimethylsilyl) oxy)methyl]-3"-(hydroxypropyl)]-2,5-piperazinedione ($\mathbf{2 5 b}$). To a stirred solution of 53 ($298 \mathrm{mg}, 0.541 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at room temperature was added $\mathrm{Et}_{3} \mathrm{~N}(0.750 \mathrm{~mL}, 0.541$ $\mathrm{mmol}, 1.0$ equiv) followed by tert-butyldimethylsilyl chloride $(89.23 \mathrm{mg}$, $0.594 \mathrm{mmol}, 1.15$ equiv), and the mixture was stirred at room temperature. After 14 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous sodium sulfate, filtered, concentrated,
and separated by flash column silica gel (eluted with 1:1 EtOAc/hexanes) to afford $96 \mathrm{mg}(27.0 \%, 35 \%$ based on recovered starting material) of $\mathbf{2 4 b}$ and 45 mg ($12.6 \%, 16.2 \%$ based on recovered starting material) of $\mathbf{2 5 b}$ as oils.

Compound 24b: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $0.11(3 \mathrm{H}$, s), $0.12(3 \mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.3(1 \mathrm{H}, \mathrm{m}), 1.98(2 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}$, $\mathrm{m}), 3.70-4.00(4 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.94(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.7 \mathrm{~Hz}), 3.96(1 \mathrm{H}, 1 /, \mathrm{ABq}, J=14.3 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 5.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.3 \mathrm{~Hz}), 5.31(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz})$, $6.62(1 \mathrm{H}, \mathrm{s}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.12$ $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.12-7.16(2 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.5$ $\mathrm{Hz}), 7.60(1 \mathrm{H}, \mathrm{dd}, J=10.8,8.2 \mathrm{~Hz}), 8.48(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$; IR $\left(\mathrm{NaCl}\right.$, neat) $3600-3200,1671,1248,1030 \mathrm{~cm}^{-1}$

Compound 25b: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 0.06(6 \mathrm{H}$, s), $0.89(9 \mathrm{H}, \mathrm{s}), 1.87(1 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{m}), 2.28-2.35(1 \mathrm{H}, \mathrm{m})$, $2.86-2.98(1 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.75-3.85(4 \mathrm{H}, \mathrm{m})$, $3.81(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 3.94(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 3.97$ $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.09(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 5.33(1 \mathrm{H}$, $\left.1 /{ }_{2} \mathrm{ABq}, J=14.7 \mathrm{~Hz}\right), 6.61(1 \mathrm{H}, \mathrm{s}), 6.75(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.76(2$ $\mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.10-7.20(2 \mathrm{H}, \mathrm{m}), 7.51(1 \mathrm{H}$, br $\mathrm{t}, J=1.71,8.1 \mathrm{~Hz}), 8.40(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, J=4.7 \mathrm{~Hz}$); IR (NaCl , neat) $3700-3200,1665,1240,1030 \mathrm{~cm}^{-1}$.

1,4-Bis(p-methoxybenzyl)-3-(2'-thiopyridyl)-6-[$1^{\prime \prime}$-[(methylsulfonyl)-methyl]- $\mathbf{3}^{\prime \prime}-[(($ tert - butyldimethylsilyl)oxy) propyl $]]-2,5$-piperazinedione (26b). To a stirred solution of $\mathbf{2 4 b}$ ($154 \mathrm{mg}, 0.231 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at room temperature was added $\mathrm{Et}_{3} \mathrm{~N}(0.035 \mathrm{~mL}, 0.254$ mmol, 1.1 equiv) followed by mesyl chloride $(0.019 \mathrm{~mL}, 0.254 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at room temperature for 35 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:1 EtOAc/hexanes) to afford $117 \mathrm{mg}(68 \%, 75 \%$ based on recovered starting material) of $\mathbf{2 6 b}$ as an oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CHCl}_{3} 0.056(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 1.78-1.91(1 \mathrm{H}, \mathrm{m}), 1.93-2.04(1$ $\mathrm{H}, \mathrm{m}), 2.63-2.78(1 \mathrm{H}, \mathrm{m}), 2.97(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s})$, $3.73-3.93(4 \mathrm{H}, \mathrm{m}), 4.02-4.12(2 \mathrm{H}, \mathrm{m}), 4.39(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 5.05$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.32(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 6.74(1$ $\mathrm{H}, \mathrm{s}), 6.74(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.05(2 \mathrm{H}$, $\mathrm{d}, J=8.6 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.08-7.20(2 \mathrm{H}, \mathrm{m}), 7.50(1$ $\mathrm{H}, \mathrm{dd}, J=1.5,7.7 \mathrm{~Hz}), 8.56(1 \mathrm{H}, \mathrm{brd}, J=4.0 \mathrm{~Hz})$; IR (NaCl , neat $)$ $1680,1510,1250,1170 \mathrm{~cm}^{-1}$.

8,10-Bis (p-methoxybenzyl)-8,10-diaza-5-[(methylsulfonyl)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (28b). To a stirred solution of 26b (16 $\mathrm{mg}, 0.23 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) at room temperature was added solid $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(6.0 \mathrm{mg}, 0.023 \mathrm{mmol}, 1.0$ equiv $)$, and the mixture was stirred at room temperature. After 16 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 100\% EtOAc) to afford 9.8 mg (83%) of $\mathbf{2 8 b}$ as an oil: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 1.78-1.94(2 \mathrm{H}, \mathrm{m}), 1.48-1.62(1 \mathrm{H}, \mathrm{m}), 3.07(3 \mathrm{H}$, $\mathrm{m}), 3.31\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=6.9, J_{\mathrm{gem}}=12.4 \mathrm{~Hz}\right), 3.80-4.01(3 \mathrm{H}, \mathrm{m}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 3.82(4 \mathrm{H}, \mathrm{s}), 4.12(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.3 \mathrm{~Hz}), 4.19(1 \mathrm{H}$, br s), $4.97(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 5.16(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.3 \mathrm{~Hz})$, $5.23(1 \mathrm{H}, \mathrm{s}), 6.86(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.20$ $(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=8.6 \mathrm{~Hz}) ; \operatorname{IR}(\mathrm{NaCl}$, neat) $1670,1608,1512,1240$ cm^{-1}; mass spectrum, $m / e 518\left(\mathrm{M}^{+}, 7.8\right), 422$ (5.9), 397 (9.4), 301 (7.9), 136 (20.5), 121 (100).

8,10-Bis (p-methoxybenzyl)-8,10-diaza-5-[(methylsulfonyl)methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (39b). To a stirred solution of the alcohols 54 and 55 (obtained above as a $2: 1$ mixture) ($198 \mathrm{mg}, 0.45$ mmol, 1.0 equiv) in THF (2 mL) at room temperature was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.157 \mathrm{~mL}, 1.125 \mathrm{mmol}, 2.5$ equiv) followed by mesyl chloride $(0.087$ $\mathrm{mL}, 1.125 \mathrm{mmol}, 2.5$ equiv). The solution was stirred for 12 h , poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and separated on PTLC silica gel (eluted with 2:1 EtOAc/hexanes) to afford 208 mg (85% yield) of the mixture of mesylates 39 b and the bicyclo[3.2.2] isomer in the same ratio of ring sizes as the starting material mixture: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $1.50-1.70(1 \mathrm{H}$, m), $1.78-1.96(1 \mathrm{H}, \mathrm{m}), 2.32-2.46(1 \mathrm{H}, \mathrm{m}), 3.03(3 \mathrm{H}, \mathrm{s}), 3.80-4.30$ $(4 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.08(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz})$, $4.13(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=14.5 \mathrm{~Hz}), 4.97(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{s}), 6.84(2 \mathrm{H}$, $\mathrm{d}, J=8.6 \mathrm{~Hz}), 6.80(2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.23$ ($2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$); IR (NaCl , neat) $1675,1510,1460,1240 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 518\left(\mathbf{M}^{+}, 3.5\right), 422$ (1.9), 397 (3.1), 352 (0.7), 301 (2.7), 232 (0.1), 121 (100).

8,10-Bis (\boldsymbol{p}-methoxybenzyl)-8,10-diaza-5-methylene-2-oxabicyclo-[4.2.2]decane-7,9-dione (42b) from 40b. To a stirred solution of the selenide 40 b ($210 \mathrm{mg}, 0.405 \mathrm{mmol}, 1.0$ equiv) in THF (4.2 mL) was added 30% hydrogen peroxide ($0.124 \mathrm{~mL}, 0.405 \mathrm{mmol}, 10$ equiv). The solution was refluxed for 20 min , poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and separated by PTLC silica gel (eluted with $50 \% \mathrm{EtOAc} /$ hexanes) to afford $162 \mathrm{mg}(95.5 \%)$ of the olefin 42b: mp $112-113{ }^{\circ} \mathrm{C}$ (recryst. $\mathrm{Et}_{2} \mathrm{O} /$ hexanes), ${ }^{1} \mathrm{H} \mathrm{NMR}(270 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $2.27\left(1 \mathrm{H}\right.$, dd, $\left.J_{\text {gem }}=16.3, J_{\text {vic }}=6.82 \mathrm{~Hz}\right), 2.40(1 \mathrm{H}$, dd, $\left.J_{\text {gem }}=16.3, J_{\text {vic }}=9.0 \mathrm{~Hz}\right), 3.30\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }}=13.2, J_{\text {vic }}=8.9 \mathrm{~Hz}\right)$, $3.78-3.82(1 \mathrm{H}, \mathrm{m}), 3.79(6 \mathrm{H}, \mathrm{s}), 3.87(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.39$ $(1 \mathrm{H}, \mathrm{s}), 4.16(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.88\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{ABq}, J=14.4\right.$ $\mathrm{Hz}), 4.97(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}, 5.07(1 \mathrm{H}, \mathrm{s}), 5.16(1 \mathrm{H}, \mathrm{s}), 5.24$ $(1 \mathrm{H}, \mathrm{s}), 6.85(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.22(2$ $\mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$); IR (NaCl , neat $) 1682,1615,1518,1250,1031 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 422\left(\mathrm{M}^{+}, 3.6\right), 301$ (2.7), 149 (4.1), 121 (100). Anal. (recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes) Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 68.23%; H, 6.20%; N, 6.63. Found: C, $68.26 ; \mathrm{H}, 6.30 ; \mathrm{N}, 6.65$.

8,10-Bis (p-methoxybenzyl)-8,10-diaza-5-[(phenylselenyl) methyl]-2-oxabicyclo[4.2.2]decane-7,9-dione (41b). To a stirred solution of 28b (80 $\mathrm{mg}, 0.154 \mathrm{mmol}, 1.0$ equiv) in THF (2.5 mL) at room temperature was added a solution of PhSeNaBH 3 (0.169 mmol, 1.1 equiv) in EtOH (1.5 mL), and the mixture was heated to reflux. After 20 min , the mixture was cooled, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted wtih $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:3 $\mathrm{EtOAc} /$ hexanes) to afford $82 \mathrm{mg}(99 \%)$ of $\mathbf{4 1 b}$ as an oil: ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CHCl}_{3} 2.48-2.69(1 \mathrm{H}, \mathrm{m}), 2.85-3.04(1 \mathrm{H}, \mathrm{m})$, $3.18-3.35(1 \mathrm{H}, \mathrm{m}), 2.00\left(1 \mathrm{H}, \mathrm{d}, J_{\text {vic }}=8.6, J_{\text {gem }}=12.6 \mathrm{~Hz}\right), 2.79(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{\text {vic }}=7.2, J_{\mathrm{gem}}=12.6 \mathrm{~Hz}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.4, J_{\mathrm{gem}}=13.7\right.$ $\mathrm{Hz}), 3.78(6 \mathrm{H}, \mathrm{s}), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{vic}}=7.3, J_{\mathrm{gem}}=13.7 \mathrm{~Hz}\right), 4.01(1$ $\mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 4.03(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 4.54(1 \mathrm{H}$, s), $4.94(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 5.05(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.7 \mathrm{~Hz})$, $5.17(1 \mathrm{H}, \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.12$ $(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.27-7.29(3 \mathrm{H}, \mathrm{m})$, $7.50-7.53(2 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $1725,1670,1608,1512,1240 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 518\left(\mathrm{M}^{+}, 1.8\right), 422$ (4.8), 397 (1.4), 382 (2.1), 301 (3.7), 121 (100).

8,10-Bis ($\boldsymbol{\rho}$-methoxybenzyl)-8,10-diaza-5-methylene-2-oxabicyclo-[4.2.2]decane-7,9-dione (42b) from 41b. To a stirred solution of $\mathbf{4 1 b}$ (80 $\mathrm{mg}, 0.154 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at room temperature was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.047 \mathrm{~mL}, 1.54 \mathrm{mmol}, 10.0$ equiv), and the mixture was heated to reflux. After 15 min , the mixture was cooled, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by silica gel flash column (eluted with $1: 1 \mathrm{EtOAc} / \mathrm{hexanes}$) to afford 54 mg (83%) of $\mathbf{4 2 b}$ as a crystalline solid identical with that obtained from 40 b .

8,10-Bis($\boldsymbol{\rho}$-methoxybenzyl)-8,10-diaza-5-methylene-6-hydroxy-2-oxa-bicyclo[4.2.2]decane-7,9-dione (43b). To a stirred solution of 42b (80 mg , $0.213 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) at $-78^{\circ} \mathrm{C}$ in THF (1 mL) was added HMPA ($0.07 \mathrm{~mL}, 0.42 \mathrm{mmol}, 2.0$ equiv) hexamethylphosphorous triamide $(0.077 \mathrm{~mL}, 0.42 \mathrm{mmol}, 2.0$ equiv) followed by $n-\mathrm{BuLi}(0.33 \mathrm{~mL}$, $0.32 \mathrm{mmol}, 1.5$ equiv). The dark brown anion was stirred for 7 min , and O_{2} was bubbled through the solution for 10 min at $-78^{\circ} \mathrm{C}$, warmed to $0^{\circ} \mathrm{C}$ over 3 min , and quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and separated on PTLC silica gel (eluted with $50 \% \mathrm{EtOAc} /$ hexanes) to afford 41 mg (49% yield, 52% by conversion) of the alcohol 43b, mp $199-199.5^{\circ} \mathrm{C}$ (recryst THF/ether): ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $2.27\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.2, J_{\text {gem }}=16.6\right.$ $\mathrm{Hz}), 2.41\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=7.0, J_{\mathrm{gem}}=16.6 \mathrm{~Hz}\right), 3.31\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=9.2\right.$, $\left.J_{\text {gem }}=13.6 \mathrm{~Hz}\right), 3.80(3 \mathrm{H}, \mathrm{s}), 3.80-3.85(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.88$ $\left(1 \mathrm{E}^{\mathrm{em}}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}\right), 4.16(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.39(1$ $\mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch $), 4.89(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 4.97(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=14.5 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.16(1 \mathrm{H}$, br s $), 5.23(1 \mathrm{H}, \mathrm{s}), 6.85(2$ $\mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.22(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}) ;$ IR $(\mathrm{NaCl}$, neat $) 3500-3100,1673,1610$, $1513,1246,1083 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 438\left(\mathrm{M}^{+}, 0.9\right), 421(0.5)$, 317 (1.2), 301 (0.6), 177 (5.0), 149 (2.0), 121 (100); exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} 438.17918$, found 438.1793 .
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$ - $\mathrm{Bis}\left(\boldsymbol{p}\right.$-methoxybenzyl) $-\mathbf{2}^{\prime}, 3^{\prime}$ - \boldsymbol{O}-Isopropylidenebicyclomycin (44b). To a THF (2 mL) solution of $43 \mathrm{~b}(13 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0$ equiv) at $-98^{\circ} \mathrm{C}$ was added n-butyllithium ($0.31 \mathrm{~mL}, 0.68 \mathrm{mmol}, 2.3$ equiv). The slightly yellow anion was stirred for 3 min and quenched with (\pm)-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde ($0.021 \mathrm{~mL}, 0.148$ mmol, 5.0 equiv). The mixture was stirred for 10 min at $-98^{\circ} \mathrm{C}$, warmed to $-80^{\circ} \mathrm{C}$, quenched with $50 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(0.2 \mathrm{~mL})$, evaporated to
dryness and separated on PTLC silica gel (eluted with 50\% EtOAc/ hexanes) to afford 6 mg of the desired diol 44b (42% yield, 95% by conversion) plus 9 mg of the starting material $43 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $0.841(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 2.00-2.10$ ($1 \mathrm{H}, \mathrm{m}$), 2.80-2.89 (1 H, m), 3.55-3.62 (1 H, m), 3.78-3.85 (1 H, m), $3.78(6 \mathrm{H}, \mathrm{s}), 3.82(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=9.3 \mathrm{~Hz}), 4.11(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $9.3 \mathrm{~Hz}), 4.31(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.5 \mathrm{~Hz}), 4.53(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.5$ $\mathrm{Hz}), 4.61(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.3 \mathrm{~Hz}), 4.99$ $(1 \mathrm{H}, \mathrm{s}), 5.08(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.3 \mathrm{~Hz}), 5.15(1 \mathrm{H}, s), 5.56(1 \mathrm{H}, \mathrm{s})$, $6.59\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.79(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.39$ ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), $7.44(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$); IR (NaCl , neat) $3600-3150,1670,1660,1515,1245 \mathrm{~cm}^{-1}$, mass spectrum, $m / e 582\left(\mathrm{M}^{+}\right.$, $0.8), 468(0.4), 451(0.4), 241(1.0), 149$ (3.3), 121 (100); exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} 582.25784$; found 582.257100 .
$\boldsymbol{N}, \boldsymbol{N}^{\prime}-\operatorname{Bis}\left(\boldsymbol{p}\right.$-methoxybenzyl)-1' \boldsymbol{O}-(trifluoroacetyl) $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ - \boldsymbol{O} - isopropylidenebicyclomycin (59). To a stirred solution of $\mathbf{4 4 b}$ ($9 \mathrm{mg}, 0.154$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added solid (dimethylamino) pyridine ($20 \mathrm{mg}, 0.169 \mathrm{mmol}, 11.0$ equiv) followed by trifluoroacetic anhydride $(0.02 \mathrm{~mL}, 0.15 \mathrm{mmol}, 10.0$ equiv $)$, and the mixture was stirred at room temperature. After 25 min , the mixture was evaporated to dryness and separated by PTLC silica gel (eluted with 1:1 EtOAc/hexanes) to afford 10 mg (95%) of 59 as an oil: ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ TMS $0.41(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 2.30$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=8.9, J_{\text {gem }}=16.6 \mathrm{~Hz}\right), 2.40\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=7.3 \mathrm{~Hz}, J_{\text {gem }}\right.$ $=16.6 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.24\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=8.9, J_{\mathrm{gem}}\right.$ $=13.6 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{v i c}=7.3, J_{\mathrm{gem}}\right.$ $=13.6 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.22(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.8 \mathrm{~Hz})$, $4.55(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.6 \mathrm{~Hz}), 4.55(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.8 \mathrm{~Hz}), 4.94$ $(1 \mathrm{H}, \mathrm{s}), 4.95(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=13.6 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{s}), 5.67(1 \mathrm{H}, \mathrm{br}$ s), $6.09\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.78(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J$ $=7.9 \mathrm{~Hz}), 7.86(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.184(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz})$; IR (NaCl , neat) $3600-3200,1790,1680,1665,1660,1510,1250 \mathrm{~cm}^{-1}$; exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{10} 678.24011$, found 678.24290 .
(\pm)-Bicyclomycin (1). To a stirred solution of 59 ($18 \mathrm{mg}, 0.026$ mmol, 1.0 equiv) in acetonitrile $/ \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{M})$ was added solid ceric ammonium nitrate ($58.2 \mathrm{mg}, 0.106 \mathrm{mmol}, 4.0$ equiv) and the mixture was stirred at room temperature. After 40 min , the mixture was diluted with MeOH and separated by PTLC silica gel (eluted with $1: 1 \mathrm{MeOH} / \mathrm{THF}$) to afford $2.6 \mathrm{mg}(31 \%, 35 \%$ based on recovered starting material) of racemic bicyclomycin, that was identical with a natural sample by NMR, IR, TLC, and bioassay. ${ }^{34}$
$(+)-\boldsymbol{N}, \boldsymbol{N}^{\prime}-\operatorname{Bis}\left(\boldsymbol{p}\right.$-methoxybenzyl)-2, $\mathbf{3}^{\prime}$ - \boldsymbol{O}-isopropylidenebicyclomycin (44b). To a stirred solution of $\mathbf{4 3 b}$ ($40 \mathrm{mg}, 0.091 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) at $-100^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(0.095 \mathrm{~mL}, 0.228 \mathrm{mmol}, 2.5$ equiv); the yellow enolate was stirred for 10 min , and then optically active aldehyde 18 ($0.008 \mathrm{~mL}, 0.059 \mathrm{mmol}, 0.65$ equiv) was added and the mixture was stirred at $-109^{\circ} \mathrm{C}$. After 20 min , the mixture was warmed to $-50^{\circ} \mathrm{C}$, methanol (10 equiv) was added, and the mixture was warmed to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and separated by PTLC silica gel (eluted with 1:2 EtOAc/hexanes) to afford 5 mg [9%, 49% based on recovered starting material, $\left.[\alpha]^{25}{ }_{\mathrm{D}}-4.60\left(c 2.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$ of $\mathbf{4 4 b}$ as an oil, $[\alpha]^{25}{ }_{\mathrm{D}}+74.80\left(c 5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .44 \mathrm{~b}$ was identical with racemic diol by NMR, IR, and TLC.
(+)- $\boldsymbol{N}, \boldsymbol{N}^{\prime}$ - $\operatorname{Bis}\left(\boldsymbol{p}\right.$-methoxybenzyl)-1'-O-(trifluoroacetyl) $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\boldsymbol{O}$-isopropylidenebicyclomycin (59). To a stirred solution of $(+)-44 \mathrm{~b}(6 \mathrm{mg}$, $0.01 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature was added DMAP ($14.4 \mathrm{mg}, 0.11 \mathrm{mmol}, 11.0$ equiv) followed by trifluoroacetic anhydride ($0.014 \mathrm{~mL}, 0.1 \mathrm{mmol}, 10.0$ equiv), and the mixture was stirred at room temperature. After 20 min , the mixture was evaporated to dryness and separated by PTLC silica gel (eluted with 1:2 EtOAc/hexanes) to afford 7 mg (99%) of 32b as an oil, $[\alpha]^{24}{ }_{\mathrm{D}}+41.18\left(c 6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Compound $(+)-59$ was found to be identical by NMR and TLC with the racemic material.
$(+)$-Bicyclomycin (Synthetic). To a stirred solution of $(+)-59(7 \mathrm{mg}$, $0.01 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ at room temperature was added CAN ($33.9 \mathrm{mg}, 0.06 \mathrm{mmol}, 6.0$ equiv), the mixture was stirred 42 min , diluted with MeOH , and separated by PTLC silica gel (eluted with $1: 5 \mathrm{MeOH} / \mathrm{CHCl}_{3}$) to afford $1 \mathrm{mg}(32.07 \%)$ of 1 as a white powder, $[\alpha]^{24} \mathrm{D}+49.0^{\circ}\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$, ee 78%. The synthetic material was identical by NMR and TLC with an authentic sample of naturally occurring bicyclomycin.

Acknowledgment. We gratefully acknowledge the National Institutes of Health Grant RO1AIGM 18957 for financial support of this work. We thank Fujisawa Pharmaceutical Co., Ltd., Japan, for the generous gift of natural bicyclomycin used for comparison. NMR measurements at 360 MHz were obtained at the Colorado State University Regional NMR Center, funded by the National

Science Foundation Grant CHE 78-18581. High-resolution mass spectra were obtained at the Midwest Center for Mass Spectrometry a National Science Foundation Regional Instrumentation Facility (Grant CHE 8211164).

Registry No. (土)-1, 89362-24-3; (+)-1, 38129-37-2; 10, 92098-00-5; 11, 92098-01-6; 12, 92216-23-4; 13, 92098-02-7; 14, 95782-30-2; 15, 92216-24-5; 16, 95694-56-7; 17, 95782-31-3; 18a, 95694-57-8; 19a, 95694-58-9; 20a, 95694-59-0; 21a, 95694-60-3; 22a, 95694-61-4; 23a, 92098-06-1; 24a, 95782-32-4; 24b, 95694-62-5; 25a, 95782-33-5; 25a (R ${ }_{1}$ $\left.=\mathrm{R}_{2}=\mathrm{SiMe}_{2} \mathrm{Bu}-t\right)$, 95694-74-9; 25b, 95694-63-6; 26a, 95782-34-6; 26b, 95782-35-7; 27a, 95782-36-8; 27b, 95694-64-7; 28a, 95782-37-9; 28b, 95782-38-0; 29a, 95782-39-1; 30, 92098-07-2; 31, 92125-39-8; 32,

95739-42-7; 33, $92125-40-1 ; 34,92125-41-2$; 35, $95694-65-8$; 36 95694-66-9; 37, 95694-67-0; 38, 95739-44-9; 39a, 95782-40-4; 39a ([3.2.2] isomer), 95694-68-1; 39b, 95782-41-5; 39b ([3.2.2] isomer), 95694-69-2; 40a, 92098-05-0; 40b, 92098-14-1; 41a, 95782-42-6; 41b, 95782-43-7; 42a, 92216-25-6; 42b, 92098-15-2; 43a, 92098-08-3; 43b, 92098-16-3; 44a, 92098-09-4; 44b, 92098-17-4; (+)-44b, 95694-70-5; 45, 63777-16-2; 46, 92125-61-6; 47, 92098-11-8; 48, 92216-27-8; 49, 92216-26-7; 50, 92216-28-9; 51, 92098-03-8; 52, 92216-29-0; 53, 95782-44-8; 54, 92098-12-9; 55, 95739-48-3; 57, 95694-71-6; 58, 95694-72-7; 59, 92125-62-7; (+)-59, 95694-73-8; (\pm)-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde, 81600-36-4; (-)-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde, 79243-92-8; γ-butyrolactone trimethylsilyl enol ether, 51425-66-2.

Synthesis of Skeletally Labeled 3-Methylhexaborane(12) and 2-Methylpentaborane(9): ${ }^{10}$ B and ${ }^{11}$ B NMR Spectral Studies of Base-Catalyzed Intramolecular Rearrangements in 2-Methylpentaborane(9)

Donald F. Gaines* and Darrell E. Coons
Contribution from the Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706. Received August 29, 1984

Abstract

Selectively ${ }^{10} \mathrm{~B}$ labeled 3- $\mathrm{MeB}_{6} \mathrm{H}_{11}$ has been synthesized from $1-\mathrm{MeB}_{5} \mathrm{H}_{8}$ and $96 \%{ }^{10} \mathrm{~B}$ labeled $\mathrm{B}_{2} \mathrm{H}_{6}$ by modification of a previously published procedure. Positions $B(1), B(2)$, and $B(6)$ of the labeled $3-\mathrm{MeB}_{6} \mathrm{H}_{11}$ each contain $46 \pm 5 \%{ }^{10} \mathrm{~B}$ while $B(3), B(4)$, and $B(5)$ are isotopically normal $\left(19 \%{ }^{10} B\right)$. Reaction of this compound with dimethyl ether produces $2-\mathrm{MeB}_{5} \mathrm{H}_{8}$ which is ${ }^{10} \mathrm{~B}$ enriched at $\mathrm{B}(4)\left(47 \pm 5 \%{ }^{10} \mathrm{~B}\right)$ and, to a lesser extent, at $\mathrm{B}(3,5)\left(30 \pm 5 \%{ }^{10} \mathrm{~B}\right)$. In the presence of 2,6 -lutidine the ${ }^{10} \mathrm{~B}$ label in the $2-\mathrm{MeB}_{5} \mathrm{H}_{8}$ equilibrates into all boron positions except the methyl-substituted $\mathrm{B}(2)$. These are the first direct observations of the movement of cluster boron atoms in the isomerization of pentaborane(9) derivatives. Several proposed isomerization mechanisms are examined in light of these results.

Interest in the chemistry of cluster compounds is rapidly expanding. ${ }^{1}$ Internal cluster rearrangement and exchange processes are an important area of cluster chemistry, though there are few examples of experimentally verified mechanisms of such rearrangements. A number of different types of intramolecular cluster rearrangements and exchange processes have been observed. For example, a cluster may undergo internal site exchange of terminal or bridging groups (or atoms) attached to the periphery of the cluster while the cluster framework atoms remain intact and static. Such exchange has been studied extensively in metal carbonyl clusters ${ }^{2,3}$ and in metallaborane clusters. ${ }^{4}$ A cluster may also undergo internal atom rearrangements that change the cluster shape or produce a different geometric isomer but that do not involve movement of terminal substituents to different cluster atoms. A classic example of this type of rearrangement is the isomerization of the icosahedral carboranes (eq 1). ${ }^{5,6}$ Intramolecular cluster rearrangements may also involve a combination of terminal substituent movement and cluster atom movement.

$$
\begin{equation*}
1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12} \xrightarrow{450{ }^{\circ} \mathrm{C}} 1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12} \xrightarrow{620^{\circ} \mathrm{C}} 1,12-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12} \tag{1}
\end{equation*}
$$

Extending our interest in intramolecular exchange processes in boranes and metallaborane clusters, we address in this paper several aspects of the isomerization mechanism of the squarepyramidal pentaborane(9), $\mathrm{B}_{5} \mathrm{H}_{9}$, framework. Pentaborane(9)

[^8]derivatives have long been known to undergo isomerization reactions in the presence of Lewis bases. The most complete example, though not the first, is trimethylsilylpentaborane(9) ${ }^{7}$ (eq 2). The μ-($\left.\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{B}_{5} \mathrm{H}_{8}$ contains the $\mathrm{Me}_{3} \mathrm{Si}$ group in a bridging position, analogous to a bridging hydrogen atom, between two adjacent boron atoms in the base of the pentaborane pyramid. $\mu-\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{B}_{5} \mathrm{H}_{8} \xrightarrow{\mathrm{Et}_{2} \mathrm{O}} 2-\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{B}_{5} \mathrm{H}_{8} \stackrel{\text { HMTA }}{\rightleftharpoons} 1-\left(\mathrm{Me}_{3} \mathrm{Si}\right)^{\mathrm{H}} \mathrm{B}_{5} \mathrm{H}_{8}$

The silicon is considered to be bonded to the two adjacent boron atoms by a boron-silicon-boron, three-center, two-electron bond. ${ }^{8}$ Isomerization of the $\mu-\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{B}_{5} \mathrm{H}_{8}$ occurs in diethyl ether to form
 substituent position on the base of the pentaborane pyramid. Further isomerization to $1-\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{B}_{5} \mathrm{H}_{8}$ occurs at elevated temperatures or in the presence of stronger bases such as hexamethylenetetramine. The mechanisms of these processes in various pentaborane(9) derivatives have been studied in our laboratories ${ }^{9}$ and elsewhere. ${ }^{10}$

[^9]
[^0]: ${ }^{\dagger}$ Taken in part from the Ph．D．Thesis of R．W．Armstrong，Colorado State University， 1984.
 ${ }^{\ddagger}$ N1H Research Career Development Awardee 1984－1989．

[^1]: (2) "Merck Index", 10th ed.; Merck: Rahway, NJ, 1984; No. 1213.
 (3) (a) Miyoshi, T.; 1seki, M.; Konomi, T.; Imanaka, H. J. Antibiot. 1980 33, 480. (b) lseki, M.; Miyoshi, T.; Konomi, T.; Imanaka, H. Ibid. 1980 33, 488.
 (4) Maag, H.; Blount, J. F.; Coffen, D. L.: Steppe, T. V.; Wong, F. J. Am. Chem. Soc. 1978 100, 6786.
 (5) For synthetic approaches to 1 , see the references cited in ref 7 and 9: in addition, see: Sera, A.; Itoh, K.; Yamada, H.; Aoki, R. Heterocycles 1984 22, 713.
 (6) (a) Nakatsuka, S.; Yuamada, K.; Yoshida, K.; Azano, O.; Murakami, Y.; Goto, T. Tetrahedron Lett. 1983 24, 5627. (b) Nakatsuka, S.; Goto, T. Heterocycles 198421,61 and references cited therein.
 (7) Williams, R. M.; Armstrong, R. W.; Dung, J.-S. J. Am. Chem. Soc. 1984 106, 5748.
 (8) Fukuyama, T.; Robins, B. D.; Sachleben, R. A. Tetrahedron Lett 1981 22, 4155.
 (9) (a) Williams, R. M. Tetrahedron Lett 1981 22, 2341. (b) Williams, R. M.; Anderson, O. P.; Armstrong, R. W.; Josey, J.; Meyers, H.; Eriksson, C. J. Am. Chem. Soc. 1982 104, 6092 . (c) Williams, R. M.; Dung, J.-S.; Josey, J.; Armstrong, R. W.; Meyers, H. Ibid. 1983 105, 3214.

[^2]: (10) Maag has realized the enolate condensation of N, N^{\prime}-diacetylglycine anhydride with a ketone (ref 4); we were unable to effect this transformation on N, N^{\prime}-dialkylpiperazinediones.
 (11) See, for example: Ohler, E.; Tataruch, F.; Schmidt, U. Chem. Ber. 1973 106, 165 . See also ref 9.
 (12) Trown, P. W. Biochem. Biophys. Res. Commun. 1968 33, 402.
 (13) Williams, R. M.; Armstrong, R. W.; Maruyama, L. K.; Dung, J.-S.; Anderson, O. P. J. Am. Chem. Soc., preceeding paper in this issue.

[^3]: (15) Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was found to preclude proton-catalyzed removal of the silyl ether by the triflic acid that is generated during cyclization (16) Dung, J.-S.; Armstrong, R. W.; Williams, R. M. J. Org. Chem. 1984 49, 3416.
 (17) Among the conditions examined were: $20 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 1 \mathrm{~atm}, \mathrm{EtOH}$, $80^{\circ} \mathrm{C} ; 20 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 75 \mathrm{psi}, \mathrm{EtOH}, 25^{\circ} \mathrm{C} \rightarrow 80^{\circ} \mathrm{C} ; 20 \% \mathrm{PtO}_{2}, \mathrm{H}_{2}, 1 \mathrm{~atm}$ $\rightarrow 75 \mathrm{psi}, \mathrm{EtOH}, 25^{\circ} \mathrm{C} \rightarrow 80^{\circ} \mathrm{C} ; 20 \% \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, 1 \mathrm{~atm} \rightarrow 75^{\circ} \mathrm{psi} ; \mathrm{EtOH}$, $25^{\circ} \mathrm{C} \rightarrow 80^{\circ} \mathrm{C} ; \mathrm{Li} / \mathrm{NH}_{3} / \mathrm{THF} ; \mathrm{Na} / \mathrm{NH}_{3} / \mathrm{THF} ; \mathrm{Al} / \mathrm{Hg} / \mathrm{THF} ; \mathrm{H}_{3} \mathrm{PO}_{4} /$ $\mathrm{PhOH} ; \mathrm{DDQ} ; \mathrm{CrO}_{3} ; \mathrm{CAN} ; \mathrm{BCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{TMS} 1 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

[^4]: (18) Kunieda, T.; Witkop, B. J. Am. Chem. Soc. 1971 93, 3478.
 (19) The N, N^{\prime}-dibenzoyl and N, N^{\prime}-diacetyl-bis(thiopyridine) substrates (cf., 11) were prepared but did not undergo the coupling reaction.
 (20) Newcomb, M.; Williams, W. G. Tetrahedron Lett. 198425,2723 and references cited therein
 (21) For example, see: Rondan, N. G.; Houk, K. N.; Beak, P.; Zajdel, W. J.; Chandrasekhar, J.; Schleyer, P. v. R. J. Org. Chem. 1981 46, 4108.

[^5]: (26) Yoshimura, J.; Yamaura, M.; Suzuki, T.: Hashimoto, H. Chem. Lett 19831001.
 (27) Ger. Patent 2647 322, April 28, 1977; Chem. Abstr. 1977 87, $102391 s$.
 (28) Reference 6 a indicates that 1,4-bis(p-methoxybenzyl)-2,5piperazinedione underwent aromatic bromination and not bromination at the $3,6-$ positions of the piperazinedione. Under the conditions we utilize (NBS, CCl_{4}; see ref 13), a 98% yield of dibromide is obtained with no evidence for aromatic substitution

[^6]: (29) Except as specifically noted in the text, a series compounds contain $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$ and b series compounds contain $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OMe}$ (see Ex perimental Section for the preparation of each individual series).

[^7]: (30) The assignment is based on the ca. 1 ppm upfield shift of the $\mathrm{C}-1^{\prime}-\mathrm{OH}$ from $\delta 6.60(44 \mathrm{~b})$ to $\delta 5.78$; the isopropylidene and $\mathrm{C}-2^{\prime}-\mathrm{CH}_{3}$ resonances do not shift considerably (see Experimental Section).
 (31) For a review, see: Heathcock, C. H. In "Comprehensive Carbanion Chemistry"; Durst, T., Buncel, E., Eds. Elsevier: New York, 1981; Vol. II, Chapter 4.
 (32) Wacker, O.; Kump, W.; Muller, B. W. Tetrahedron Lett 1983 24, 5607.

[^8]: (1) See, for example: Behnken, P. E.; Belmont, J. A.; Busby, D. C.; Delaney, M. S.; King, R. E., 111; Kreimendahl, C. W.; Marder, T. B.; Wilczynski, J. J., Hawthorne, M. G. J. Am. Chem. Soc. 1984, 106, 3011-3025.
 (2) Band, E.; Muetterties, E. L. Chem. Rev. 1978, 78, 639-658.
 (3) Geoffroy, G. L. Acc. Chem. Res. 1980, 13, 469-476.
 (4) See, for example: Gaines, D. F.; Hildebrandt, S. J. In "Metal lnteractions with Boron Clusters"; Grimes, R. N., Ed.; Plenum Press: New York and London, 1982; pp 132-143.
 (5) Grafstein, D.; Dvorak, J. Inorg. Chem. 1963, 2, 1128-1133.
 (6) Papetti, S.; Heying, T. L. J. Am. Chem. Soc. 1964, 86, 2295.

[^9]: (7) (a) Gaines, D. F.; lorns, T. V. J. Am. Chem. Soc. 1968, 90, 6617-6621. (b) Gaines, D. F.; lorns, T. V. Inorg. Chem. 1971, 10, 1094-1095.
 (8) Calabrese, J. C.; Dahl, L. F. J. Am. Chem. Soc. 1971, 93, 6042-6047.
 (9) (a) Gaines, D. F.; lorns, T. V. J. Am. Chem. Soc. 1967, 89, 3375. (b) Gaines, D. F.; lorns, T. V. Ibid. 1970, 92, 4571-4574. (c) Gaines, D. F.; Walsh, J. L. Inorg. Chem. 1978, 17, 806-809. (d) Heppert, J. A.; Gaines, D. F. Ibid. 1983, 22, 3155-3163.
 (10) (a) Onak, T. P. J. Am. Chem. Soc. 1961, 83, 2584. (b) Onak, T. P.; Gerhard, F. J. Inorg. Chem. 1962, I, 742-744. (c) Hough, W. V.; Edwards, L. J.; Stang, A. F. J. Am. Chem. Soc. 1963, 85, 831. (d) Onak, T. P.; Gerhart, F. J.; Williams, R. E. Ibid. 1963, 85, 1754-1756. (e) Burg, A. B.; Sandhu, J. S. Ibid. 1965, 87, 3787-3788. (f) Friedman, L. B.; Lipscomb, W. N. Inorg. Chem. 1966, 5, 1752-1757. (g) Onak, T. P.; Dunks, G. B.; Stearcy, J. W.; Spielman, J. Ibid. 1967, 6, 1465-1471. (h) Johnson, H. D.; Geanangel, R. A.; Shore, S. G. Ibid. 1970, 9, 908-912. (i) Tucker, P. M.; Onak, T.; Leach, J. B. Ibid. 1970, 9, 1430-1441. (j) Brice, V. T.; Shore, S. G. Ibid. 1973, 12, 309-313.

